Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)
\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)
Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)
\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)
\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow F< \frac{3}{2}\)
\(\Rightarrow2A< 4+\frac{3}{2}\)
\(\Rightarrow2A< \frac{11}{2}\)
\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)
2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)
\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)
\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)
\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)
Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)
\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)
\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )
\(\Rightarrow2D< 6\)
\(\Rightarrow D< 3\)
\(\Rightarrow2B< 11+3\)
\(\Rightarrow2B< 14\)
\(\Rightarrow B< 7\left(đpcm\right)\)
a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
=13+.....+3^11 chia het cho 13
nen C=1+3+...+3^11 chia het cho 13
\(C=1+3+3^2+3^3+......+3^{11}\)
\(C=\left(1+3+3^2\right)+.......+\left(3^9+3^{10}+3^{11}\right)\)
\(C=13.\left(1+3+3^2\right)+........+13.\left(1+3+3^2\right)\)
Mà 13 \(⋮\)13 => C \(⋮\)13
Tương tự với câu b
b) \(C=1+3+3^2+3^3+.......+3^{11}\)
\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=40.\left(1+3+3^2+3^3\right)+......+40.\left(1+3+3^2+3^3\right)\)
Mà 40 \(⋮\)40 => C \(⋮\)40
Lời giải:
Ta có:
\(A=1+3+3^2+3^3+...+3^{11}\)
\(=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^9+3^{10}+3^{11})\)
\(=(1+3+3^2)+3^3(1+3+3^2)+...+3^9(1+3+3^2)\)
\(=(1+3+3^2)(1+3^3+...+3^9)=13(1+3^3+...+3^9)\vdots 13\) (đpcm)
Và:
\(A=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+(3^8+3^9+3^{10}+3^{11})\)
\(=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+3^8(1+3+3^2+3^3)\)
\(=(1+3+3^2+3^3)(1+3^4+3^8)=40(1+3^4+3^8)\vdots40\)
ta có:
\(3C=3+3^2+3^3+...+3^{12}\)
\(2C=3C-C=3^{12}-1\)
\(C=\frac{3^{12}-1}{2}\)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
\(C=1+3+3^2+...+3^{11}\)
\(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(C=13+3^3.13+...+3^9.13\)
\(\Rightarrow C⋮13\)
a
A=1+3+3²+...+3^30
3A=3(1+3+3²+...+3^30)
3A=3+3²+3^3+...+3^31
3A-A=3^31-1
=>A=3^31-1
C = 1+3+32+33+.....+311
C=(1+3+32)+...+(39+310+311)
C=13+.....+(39.1+39.3+39.32)
C=13.1+...+39.(1+3+32)
C=13.1+...... +39.13
C=13.(1+33+36+39)
Vì 13 chia hết cho 13=>13.(1+33+36+39)
=>C chia hết cho 13
Vậy C chia hết cho 13