\(\frac{a^2}{a-1}+\left(\frac{a}{a^2-1}+\frac{1}{a-a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

ĐKXĐ: \(\left\{{}\begin{matrix}a-1\ne0\\a^2-1\ne0\\a-a^3\ne0\\a+a^3\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ne1\\a\ne\left\{-1;1\right\}\\a\left(1-a^2\right)\ne0\\a\left(1+a^2\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ne1\\a\ne\left\{1;-1\right\}\\a\ne\left\{-1;0;1\right\}\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-1\\a\ne1\end{matrix}\right.\)

\(M=\frac{a^2}{a-1}+\left(\frac{a}{a^2-1}+\frac{1}{a-a^3}\right):\frac{1-a}{a+a^3}\)

\(=\frac{a^2}{a-1}+\left(\frac{a}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a\left(1-a^2\right)}\right):\frac{1-a}{a\left(1+a^2\right)}\)

\(=\frac{a^2}{a-1}+\left(\frac{a^2}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a\left(a+1\right)\left(a-1\right)}\right):\frac{1-a}{a\left(1+a^2\right)}\)

\(=\frac{a^2}{a-1}+\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}.\frac{a\left(1+a^2\right)}{1-a}\)

\(=\frac{a^2}{a-1}-\frac{1+a^2}{a-1}=\frac{a^2-1-a^2}{a-1}=-\frac{1}{a-1}\)

b/ Thay $a=\frac{1}{2}$ vào M ta được \(M=-\frac{1}{-\frac{1}{2}-1}=-\frac{1}{-\frac{3}{2}}=\frac{1}{\frac{3}{2}}=\frac{2}{3}\)

25 tháng 2 2020

a) A có nghĩa <=> \(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}x-1\ne0\\\left(1-x\right)\left(x+1\right)\ne0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x\ne1\\x\ne\pm1\end{matrix}\right.\)

b) Ta có:

A = \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
A = \(\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x^2-1\right)}\)

A = \(\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

A = \(\frac{x^2+x-x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

A = \(\frac{x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x-1\right)}\)

c) A = -1/2

<=> \(\frac{1}{2\left(x-1\right)}=-\frac{1}{2}\)

<=> 2(x - 1) = -2

<=> x - 1 = -1

<=> x = 0 (tmđk)

Vậy x = 0

12 tháng 4 2020

a/ Đkxđ: \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

Vậy phân thức được xác định khi \(\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

b/ \(A=\left[1+\frac{1}{x}+\frac{2}{x+1}\left(1+\frac{1}{x}\right)\right]:\frac{x^3+27}{2x}\)

\(=\left[1+\frac{1}{x}+\frac{2}{x+1}+\frac{2}{\left(x+1\right)x}\right]:\frac{\left(x+3\right)\left(x^2-3x+9\right)}{2x}\)

\(=\left[\frac{x\left(x+1\right)+\left(x+1\right)+2x+2}{\left(x+1\right)x}\right].\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)

\(=\frac{x^2+4x+3}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}=\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)

\(=\frac{2}{x^2-3x+9}\)

12 tháng 4 2020

thk bn nhe

5 tháng 2 2020

\(ĐKXĐ:\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

a) \(M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+a^2-2a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right].\frac{4a^2}{a^3+4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-\left(1-2a^2+4a\right)+\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(a-1\right)}.\frac{4a^2}{a^3+4a}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{a^3-1}.\frac{4a^2}{a^3+4a}\)

\(\Leftrightarrow M=\frac{a^3-1}{a^3-1}.\frac{4a^2}{a^3+4a}\)

\(\Leftrightarrow M=\frac{4a^2}{a^3+4a}\)

\(\Leftrightarrow M=\frac{4a}{a^2+4}\)

b) Ta có :

\(\left(a-2\right)^2\ge0\)

\(\Leftrightarrow a^2-4a+4\ge0\)

\(\Leftrightarrow a^2+4\ge4a\)

Dấu " = " xảy ra khi và chỉ khi :

\(\left(a-2\right)^2=0\)

\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\Leftrightarrow a=2\)

NV
12 tháng 4 2020

ĐKXĐ: \(x\ne\left\{-\frac{1}{2};\frac{1}{2};-1\right\}\)

\(B=\left(\frac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\left(\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)

\(=\frac{\left(2x^2+3x+1\right)}{\left(2x+1\right)\left(2x-1\right)}.\frac{\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)\left(2x+1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^2-x+1}\)

26 tháng 12 2018

\(M=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a-1}-\frac{2}{a^2-1}\right)\)

\(M=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a-1}-\frac{2}{\left(a+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2-1}{a\left(a-1\right)}\right):\left(\frac{a+1-2}{\left(a-1\right)\left(a+1\right)}\right)\)

\(M=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}:\frac{a-1}{\left(a-1\right)\left(a+1\right)}\)

...... what sai sai s ý ??  

24 tháng 3 2020

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

28 tháng 3 2023

mik thắc mắc tại sao 3a lại mất vậy

 

22 tháng 3 2020

Hỏi đáp ToánHỏi đáp Toán

22 tháng 3 2020
https://i.imgur.com/JE1mZAQ.jpg