Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A C B D I M N E F P H
a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC
=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)
Tương tự: AD2 + BC2 = 4R2 => ĐPCM.
b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2
Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF
= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2
c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.
C/m tương tự, ta có: IM vuông góc CD => ĐPCM.
d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN
Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).
e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.
Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(
A B C D E M J O I
a) Ta có :
\(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)
\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)
Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\) hay \(CD\perp DE\)
\(\Rightarrow DE//AB\)nên tứ giác ABED là hình thang cân
\(\Rightarrow AD=BE\)
Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)không đổi
b ) \(IB=IC=IM\)nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)
Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\)
Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\)( không đổi vì O,M cố định )
Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi.
Chúc bạn học tốt !!!
Bài 1 :
Áp dụng Cô - si ta có :
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\le\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}\)\(=\left(a+1\right)-\frac{ab+b}{2}\)
Tương tự ta cũng có : \(\frac{b+1}{c^2+1}\le\left(b+1\right)-\frac{bc+c}{2};\frac{c+1}{a^2+1}\le\left(c+1\right)-\frac{ca+a}{2}\)
Cộng vế theo vế ta được:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)\(\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{ab+bc+ca+3}{2}\)
Mặt khác ta có BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)
Do đó : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Bài 2 :
A B C D M N P Q O K I H
a) Ta có : \(MI=MA,QI=QD\)nên \(MQ\)là đường trung bình \(\Delta AID\)
\(\Rightarrow MQ//AD\)
Tương tự NP là đường trung bình của \(\Delta BIC\)
\(\Rightarrow NP//BC\)
Do đó : \(NMQ=BAD=NPQ\)nên tứ giác MPNQ nội tiếp
b ) Kẻ \(OH\perp AB\)tại H và \(OK\perp CD\)tại K
Ta có : \(AB\perp CD\)
\(\Rightarrow OHIK\)là hình chữ nhật
Do đó \(AB^2+CD^2=4\left(BH^2+CK^2\right)=4\left(R^2-OH^2+R^2-OK^2\right)\)
\(=4\left(2R^2-OI^2\right)\)
Diện tích tứ giác MPNQ là : \(\frac{MN.PQ}{2}=\frac{AB.CD}{8}\le\frac{\left(AB+CD\right)^2}{16}=\frac{2R^2-OI^2}{4}\)không đổi
GTLN của diện tích tứ giác MNPQ là : \(\frac{2R^2-OI^2}{4}\), khi đó \(AB=CD\)
Chúc bạn học tốt !!!