K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Bài 1: 

a: Xét ΔBDC có BM/BC=BE/BD

nên ME//DC và ME/DC=1/2

b: Xét ΔAEM có

I là trung điểm của AM

ID//EM

Do đó: D là trung điểm của AE

=>AD=DE=EB

=>AD=1/2DB

c: ID=1/2EM

=1/2*1/2*DC

=1/4*DC

Bài 2:

a: Xét tứ giác BDCE có

I là trung điểm chung của BC và DE

Do đo: BDCE là hình bình hành

=>BD//CE và BD=CE
b: BD//CE
nên góc ECB=góc DBC

=>góc ECB=góc ACB

=>CB là phân giác của góc ACE

28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Bài 1.a) 2(4x-3)-3(x+5)+4(x-10)=5(x+2) b) \(\dfrac{11}{2}\) - (\(\dfrac{2}{5}\)+x)= \(\dfrac{2}{3}\).(6x+1) Bài 2. a) |x-1| +2x=4 b) x+|x|=2x Bài 3. 3\(^{x+1}\) - 3\(^{x-2}\) - 3x = 153 Bài 4.Cho tam giác ABC vuông tại A, biết AC =4cm, ab=3cm, và AH ⊥ BC . Tính độ dài của BC, AH. HB. Biết HC=\(\dfrac{16}{5}\) (làm tròn kết quả đến số thập phân thứ hai) Bài 5. Cho tam giác ABC cố góc A bằng 90 độ, phân giác AD. Từ B kẻ đường...
Đọc tiếp

Bài 1.a) 2(4x-3)-3(x+5)+4(x-10)=5(x+2)

b) \(\dfrac{11}{2}\) - (\(\dfrac{2}{5}\)+x)= \(\dfrac{2}{3}\).(6x+1)

Bài 2. a) |x-1| +2x=4

b) x+|x|=2x

Bài 3.

3\(^{x+1}\) - 3\(^{x-2}\) - 3x = 153

Bài 4.Cho tam giác ABC vuông tại A, biết AC =4cm, ab=3cm, và AH ⊥ BC . Tính độ dài của BC, AH. HB. Biết HC=\(\dfrac{16}{5}\) (làm tròn kết quả đến số thập phân thứ hai)

Bài 5. Cho tam giác ABC cố góc A bằng 90 độ, phân giác AD. Từ B kẻ đường thẳng song song với AD cắt tia CA ở E.So sánh các cạnh của tam giác BEC

4/ Cho tam giác vuông ABC cố góc A bằng 90 độ , phân giác BD. Kẻ DE vuông góc với BC (E ∈BC ). Trên tia đối của tia AB lấy điểm BF sao cho AF=CE . CHứng minh rằng:

a) BD là đường trung trực của AE

B) Ba điểm D, E, F thẳng hàng

C) AD < DC

5/ Cho tam giác ABC cân ở A ( góc A khác 120 độ ). Vẻ ra phía ngoại của tam giác Các tam giác đều ABD và ACE. Gọi O là giao điểm của BE và CD. CMR :

a) BE=CD

b) D và E cắt đều đường thẳng BC

c) OB=OC

1

Bài 1:

a) \(2\left(4x-3\right)-3\left(x+5\right)+4\left(x-10\right)=5\left(x+2\right)\)

\(\Leftrightarrow8x-6-3x-15+4x-40=5x+10\)

\(\Leftrightarrow8x-3x+4x-5x=10+40+15+6\)

\(\Leftrightarrow4x=71\)

\(\Leftrightarrow x=17,75\)

b) \(\dfrac{11}{2}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\left(6x+1\right)\)

\(\Leftrightarrow\dfrac{11}{2}-\dfrac{2}{5}-x=4x+\dfrac{2}{3}\)

\(\Leftrightarrow-x-4x=\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{11}{2}\)

\(\Leftrightarrow-5x=\dfrac{-133}{30}\)

\(\Leftrightarrow x=\dfrac{133}{150}\)

17 tháng 2 2018

còn mấy bài kia giúp mk vs đc ko

khocroikhocroikhocroikhocroikhocroi

17 tháng 5 2017

A B C K I
a)
\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IB}=\overrightarrow{AI}+\dfrac{1}{2}\left(\overrightarrow{IA}+\overrightarrow{AB}\right)\)
\(=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IA}+\dfrac{1}{2}\overrightarrow{AB}\)\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}\).
b) Theo câu a:
\(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}.\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\).

3 tháng 5 2016

a)Xét tam giác BAD và BED(đều là ta giác vuông)

         BD là cạnh chung

          ABD=DBE(Vì BD là tia p/giác)

\(\Rightarrow\)tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

\(\Rightarrow\)AB=BE(cặp cạnh tương ứng)

b)Vì tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

  \(\Rightarrow\)DA=DE(cặp cạnh tương ứng)

Xét tam giác ADF và EDCđều là ta giác vuông)

     DA=DE(CMT)

     ADF=EDC(đđ)

\(\Rightarrow\)tam giác ADF=tam giác EDC(cạnh góc vuông góc nhọn)

\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)

Do đó tam giác DFC cân tại D(vì DF=DC)

c)Vì DA=DE(CMT)\(\Rightarrow\)tam giác DAE can tại D

Mà ADE=FDC(đđ)

     Mà hai tam giác DAE và CDF cân 

Do đó:DAE=DEA=DFC=DCF

\(\Rightarrow\)AE//FC vì DFC=DAE

19 tháng 11 2019

A B C M E N F P D

Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.

Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB

Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC

Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)

Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).