Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
hayΔADE cân tại A
b: Xét ΔABC có
AE/AB=AD/AC
nên DE//BC
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
d: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
=>AK là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AK là đường phân giác
nên AK là đường cao
Bạn tự vẽ hình nhé!
Vì \(\Delta ABC\)cân tại A
\(\Rightarrow AB=AC\)
Xét 2 tam giác vuông \(AEC\)và \(ADB\)có:
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\)là góc chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(ch-gn\right)\)
\(\Rightarrow AE=AD\)( 2 cạnh tương ứng )
Xét 2 tam giác vuông \(AEK\)và \(ADK\)có:
\(AE=AD\left(cmt\right)\)
\(AK\)là cạnh chung
\(\Rightarrow\Delta AEK=\Delta ADK\left(ch-cgv\right)\)
\(\Rightarrow\widehat{EAK}=\widehat{DAK}\)( 2 góc tương ứng )
\(\Rightarrow AK\)là tia phân giác của góc A.
Bạn tự vẽ hình nhá.
Xét tam giác AEC vuông tại E và tam giác ADB vuông tại D ,có :
+ Góc A : góc chung
+ AC = AB ( tam giác ABC cân tại A)
Nên tam giác AEC = tam giác ADB (cạnh huyền - góc nhọn )
=> AE = AD (2 cạnh tương ứng)
Xét tam giác AEK vuông tại E và ADK vuông tại D, có :
+ AE = AD (cmt)
+ AK : cạnh chung
Nên tam giác AEK = ADK ( cạnh huyền - cạnh góc vuông)
=> góc EAK = góc KAD (2 góc tương ứng)
Vậy AK là tia phân giác của góc A.
bạn vào web này xem nha ( tham khảo ) http://olm.vn/hoi-dap/question/86792.html
Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:
AB = AC (giả thiết)
∠(BAC) chung
⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)
⇒ AD = AE (hai cạnh tương ứng)
Xét ΔADK vuông tại D và ΔAEK vuông tại E có:
AD = AE (chứng minh trên)
AK cạnh chung
⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)
⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)
Vậy AK là tia phân giác của góc BAC.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
Suy ra: BE=CD
b: Ta có: ΔEBC=ΔDCB
nên \(\widehat{ECB}=\widehat{DBC}\)
hay ΔIBC cân tại I
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và EB=DC
nên AE=AD
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
mà AK\(\perp\)BC
nên A,I,K thẳng hàng
=>AK,BD,CE đồng quy