Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ^2 = (m^2 + n^ 2 ) ^2 = m^4 + 2m^2 .n^ 2 + n^ 4
b^ 2 = (m^2 - n ^2 ) 2 = m^4 - 2m^2 .n ^2 + n^ 4
c ^2 = (2mn) ^2 = 4m^2 .n ^2
Nhận xét: a^ 2 - b ^2 = c^ 2 => a ^2 = b ^2 + c^ 2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
\(a^2="m^2+n^2"^2=m^4+2m^2.n^2+n^4\)
\(b^2="m^2-n^2"^2=m^4-2m^2.n^2+n^4\)
\(c^2="2mn"^2=4m^2.n^2\)
Nhận xét: \(a^2-b^2=c^2\Rightarrow a^2=b^2+c^2\)
Theo Định Lý Py-ta-go đảo a;b;c là độ dài 3 cạnh của 1 tam giác vuông
P/s: Bn bấm và dòng chữ màu xanh để rìm hiểu vì Định lý Py-ta-go thuận và đảo nhé
Lý thuyết. Định lí Pytago - loigiaihay.com
Thay dấu ngoặc kép thành ngoặc đơn nha
Câu 1. B) m ≠ ±3
Câu 2. B) 3
Câu 3. C) 8cm
Câu 4. C) AB.DF = AC.DE
Câu 5. B) AC = 6cm
không hiểu chỗ nào ib mình giảng
1, a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a
thay vào M ta có
M = a . -c . -b = abc (1)
Thay tương tự vào N , P ta cũng đc N =abc (2)
P =abc( 3)
Từ 1 2 và 3 => ĐPCM
2,
a + b +c = 2P
=> b + c = 2P -a
=> ( b + c)^2 = ( 2P -a)^2
=> b^2 + 2bc+ c^2 = 4p^2 - 4pa + a^2
=> 2bc+ b^2 + c^2 -a^ 2 = 4p^2 - 4pa
=> 2bc + b^2 + c^2 -a ^ 2 = 4p(p-a)=> ĐPCM
1)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}=0\)
\(\Leftrightarrow a\cdot\left(\dfrac{a}{b+c}+1\right)+b\cdot\left(\dfrac{b}{a+c}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-a-b-c=0\)
\(\Leftrightarrow a\cdot\dfrac{a+b+c}{b+c}+b\cdot\dfrac{a+b+c}{a+c}+c\cdot\dfrac{a+b+c}{a+b}-a-b-c=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(loai\right)\\\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\left(đpcm\right)\)
p/s:đề thiếu và dư đk
Ai biết giải thì giúp mình mấy bài toán này với, mình xin cảm ơn rất nhiều
Đề này chép có đúng không thế bạn? Chứ mình thấy hơi sai sai.
Bạn cần viết cụ thể hơn: Số nguyên dương $x,y$ và số nguyên tố $p$ thỏa mãn. $p^x-y^4=4$
Lời giải:
Nếu $p=2$ thì: $y^4=2^x-4\vdots 2$
$\Rightarrow y\vdots 2$
$\Rightarrow 2^x-4=y^4\vdots 8$
$\Rightarrow 2^x$ không chia hết cho $8$
$\Rightarrow x< 3$. Thử $x=1; 2$ ta không thu được $y$ nguyên dương thỏa mãn (loại)
Nếu $p\neq 2$ ($p$ lẻ)
$p^x=y^4+4=(y^2+2)^2-(2y)^2=(y^2+2-2y)(y^2+2+2y)$
Do đó tồn tại $m,n\in\mathbb{N}$ sao cho:
$y^2+2-2y=p^m; y^2+2+2y=p^n$ và $m+n=x; m< n$
$\Rightarrow 4y=p^n-p^m$
Giả sử $m,n\geq 1$ thì $4y\vdots p\Rightarrow y\vdots p$ (do $p$ lẻ)
$\Rightarrow 4=p^x-y^4\vdots p$ (vô lý)
Do đó $m=0$. Khi đó: $y^2+2-2y=p^0=1$
$\Leftrightarrow y^2-2y+1=0\Rightarrow y=1$
$\Rightarrow p^x=5\Rightarrow p=5; x=1$
Vậy........
Bài 1:ta có a+b+c=0
=> a+b=-c ; a+c=-b ; b+c=-a
M= a(a+b)(a+c)= a(-c)(-b)=abc
N = b(b+c)(b+a)=b(-a)(-c)=abc
P=c(c+a)(c+b)= c(-b)(-a)=abc
=> M=N=P
vế trái= \(\left(b+c\right)^2\)-a2=(a+b+c)(b+c-a) = 2p(2p-a-a)=4p(p-a)= VP
=> đpcm
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK
Bài 1:
\(a-c=m^2+n^2-2mn=\left(m-n\right)^2>0\)
\(\Rightarrow a>c\)
\(a-b=m^2+n^2-m^2+n^2=2n^2>0\)
\(\Rightarrow a>b\)
\(a-\left(b+c\right)=m^2+n^2-\left(m^2-n^2+2mn\right)=2n^2-2mn=2n\left(n-m\right)< 0\)
\(\Rightarrow b+c>a\) mà \(a>b,a>c\)
\(\Rightarrow a,b,c\) là độ dài 3 cạnh của 1 tam giác.
Ta có: \(b^2+c^2=\left(m^2-n^2\right)+4m^2n^2=m^4-2m^2n^2+n^4+4m^2n^2=m^4+2m^2n^2+n^4=\left(m^2+n^2\right)^2\)
\(a^2=\left(m^2+n^2\right)^2\)
\(\Rightarrow a^2=b^2+c^2\)
\(\Rightarrow a,b,c\) là độ dài 3 cạnh của tam giác vuông (định lí Py-ta-go đảo).
Bài 2:
a) \(a^2-b^2-c^2+2bc=a^2-\left(b-c\right)^2=\left(a-b+c\right)\left(a+b-c\right)=\left(2m-2b\right)\left(2m-2c\right)=4\left(m-b\right)\left(m-c\right)\left(đpcm\right)\)