\(\frac{1}{51}\) + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

bn làm như vầy nè

a=1/51+1/52+...+1/100

A=1/3.1/7 + 1/2.1/26+....1/2.1/50

A=1/3-1/7+1/2-1/26+...1/2-1/50

A=1/3-1/50

A=47/50

như vầy đó bn tin mik đi

15 tháng 4 2018

bài 2:

a)\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

mk ko biết bn có sai đề ko nhưng mk chỉ lm theo ý mk hiểu thôi! sai thì thôi nha!

4 tháng 5 2018

\(A=\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

                          ( gạch bỏ các phân số giống nhau)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(A=\frac{1}{4}+\frac{2}{9}\)

\(A=\frac{17}{36}\)

phần b, c bn lm tương tự như phần a nha

So sánh : A = \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+ ..............+ \(\frac{1}{2018^2}\)với    B = \(\frac{75}{100}\)Ta có  \(\frac{1}{3^2}\)< \(\frac{1}{2.3}\)                   \(\frac{1}{4^2}\)< \(\frac{1}{3.4}\)               \(\frac{1}{2018^2}\)< \(\frac{1}{2017.2018}\)Suy ra : A < \(\frac{1}{2^2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............................+ \(\frac{1}{2017.2018}\)Gọi biểu...
Đọc tiếp

So sánh : A = \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ..............+ \(\frac{1}{2018^2}\)với    B = \(\frac{75}{100}\)

Ta có  \(\frac{1}{3^2}\)\(\frac{1}{2.3}\)                   \(\frac{1}{4^2}\)\(\frac{1}{3.4}\)               \(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\)

Suy ra : A < \(\frac{1}{2^2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+............................+ \(\frac{1}{2017.2018}\)

Gọi biểu thức \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ............... +  \(\frac{1}{2017.2018}\)là C 

\(\Rightarrow\)A < \(\frac{1}{2^2}\) +  C = \(\frac{1}{4}\) +  \(\frac{1}{2}\)-  \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...................+ \(\frac{1}{2017}\)-   \(\frac{1}{2018}\)=  \(\frac{1}{4}\)+  \(\frac{1}{2}\)-  \(\frac{1}{2018}\)

\(\Rightarrow\)A < ( \(\frac{1}{4}\)+  \(\frac{1}{2}\))    -   \(\frac{1}{2018}\) = \(\frac{3}{4}\) - \(\frac{1}{2018}\)\(\frac{3}{4}\)=  \(\frac{75}{100}\)

\(\Rightarrow\)A < B =  \(\frac{75}{100}\)( đpcm)

 

0
23 tháng 4 2017

Ai trả lời giúp mik nha

26 tháng 5 2017

b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)

\(B=1-\frac{1}{2015}\)

\(B=\frac{2014}{2015}\)

26 tháng 5 2017

a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}\)

\(=\frac{2014}{2015}\)

còn lại tự giải nha gần giống như phần b thôi cũng thú vị.

ủng hộ nha