\(\frac{10^{19}+2}{10^{19}-1}\)và B =\(\frac{10^{19}}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

1)

Dễ thấy \(B=\dfrac{10^{19}}{10^{19}-3}>1\)

\(\Rightarrow B=\dfrac{10^{19}}{10^{19}-3}>\dfrac{10^{19}+2}{10^{19}-3+2}=\dfrac{10^{19}+2}{10^{19}-1}=A\)

26 tháng 4 2017

bn ơi chắc j bn đó đã học công thức này

18 tháng 5 2021

\(a.\)

\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)

\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)

\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)

\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)

\(10A=1+\frac{9}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)

\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)

\(10B=1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)

19 tháng 5 2021

xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)

\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)

\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)

Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B

5 tháng 2 2020

BÀI 1:

\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)

\(\Rightarrow DPCM\)

BÀI 2 :

TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)

= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1

ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)

\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)

\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)

\(\Rightarrow A>B\)

24 tháng 4 2019

\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)

\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)

\(A=3\left(1-\frac{1}{58}\right)\)

\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)