K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)

\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)

2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)

=4+1-1/8

=5-1/8=39/8

20 tháng 9 2023

\(d) (x+1)^3-6y(x+1)^2+12y^2(x+1)-8y^3\)

\(=\left(x+1\right)^3-3\cdot\left(x+1\right)^2\cdot2y+3\cdot\left(x+1\right)\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left[\left(x+1\right)-2y\right]^3\)

\(=\left(x-2y+1\right)^3\)     (1)

Thay \(x=2;y=1,5\) vào (1), ta được:

\(\left(2-2\cdot1,5+1\right)^3\)

\(=\left(2-3+1\right)^3\)

\(=0\)

 \(---\)

\(e,\left(x-2\right)^3+3y\left(x-2\right)^2+3y^2\left(x-2\right)+y^3\) (sửa đề)

\(=\left(x-2\right)^3+3\cdot\left(x-2\right)^2\cdot y+3\cdot\left(x-2\right)\cdot y^2+y^3\)

\(=\left[\left(x-2\right)+y\right]^3\)

\(=\left(x+y-2\right)^3\)   (2)

Thay \(x+y=7\) vào (2), ta được:

\(\left(7-2\right)^3=5^3=125\)

#\(Toru\)

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:

d. $=[(x+1)-(2y)]^3=(2+1-2.1,5)^3=(3-3)^3=0$

e. Sửa đề: $(x-2)^3+3y(x-2)^2+3y^2(x-2)+y^3$

$=(x-2+y)^3=(x+y-2)^3=(7-2)^3=5^3=125$

30 tháng 10 2021

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

12 tháng 1 2022

chọn A

6 tháng 4 2017

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

6 tháng 4 2017

Mà bài này hình như học ở lớp 7 rồi!lolang

1 tháng 8 2018

Bài 1:

a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)

\(\Rightarrow4\left(x-2\right)-3x+4=0\)

\(\Rightarrow4x-8-3x+4=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)

\(\Rightarrow10x+35-15x-6=25\)

\(\Rightarrow-5x+29=25\)

\(\Rightarrow-5x=25-29\)

\(\Rightarrow-5x=-4\)

\(\Rightarrow x=\dfrac{4}{5}\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Rightarrow-x-21=0\)

\(\Rightarrow x=-21\)

Bài 2:

a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(P=8x^2y-6y^2-9x^2y+12y^2\)

\(P=-x^2y+6y^2\)

Thay x = -1 ; y = 2 vào P ta được

\(P=-\left(-1\right)^2.2+6.2^2\)

\(P=-2+24=22\)

b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(Q=20x^3-12x^2y-4x^3-x^2y\)

\(Q=16x^3-13x^2y\)

Thay x = -1 ; y = 2 vào Q ta được

\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)

\(Q=-16-26\)

\(Q=-42\)

c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)

\(H=2xy\)

Thay x = 1/4 ; y = 2012 vào H ta được

\(H=2.\dfrac{1}{4}.2012\)

\(H=1006\)

1 tháng 8 2018

1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Leftrightarrow8x-16-6x+8=2\)

\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)

b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Leftrightarrow30x-20-15x-6+55-20x=25\)

\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)

\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)

2.

a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)

\(\Leftrightarrow x^2y-18y^2\)

tại x=-1 , y=2

ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)

vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2

b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)

\(\Leftrightarrow17x^3-13x^2y\)

tại x=-1,y=2

ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)

vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)

c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)

\(\Leftrightarrow x^4+2xy-x^3\)

tại x=1/4 và y=2012

ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)

9 tháng 9 2020

           Bài làm :

 \(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

 \(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 \(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

\(d ) x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

16 tháng 10 2016

a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)

c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)

d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)