Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{3n^2+3n}{12n}=\dfrac{3n\left(n+1\right)}{12n}=\dfrac{n+1}{4}\)
=>viết được dưới dạng số thập phân hữu hạn
b: 6n+1/12n là phân số tối giản nên phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn
a, số nguyên tố > 2 nên số đó ko chia hết cho 2
=> số đó lẻ
=> số đó có dạng 4n+-1
b, số nguyên tố > 3 nên số nguyên tố đó lẻ và ko chia hết co 3
=> số đó ko thể có dạng 6k ; 6k+-2 ; 6k+3
=> số đó có dạng 6k+-1
Tk mk nha
\(A=\dfrac{3n^2+6n}{24n}\)
\(A=\dfrac{n\left(3n+6\right)}{24n}\)
\(A=\dfrac{3n+6}{24}\)
Xét \(24=2^3.3\) nên:
+ Nếu \(n⋮3\) thì A viết đc dưới dạng số thập phân hữu hạn.
+ Nếu \(n⋮̸3\) thì A viết được dưới dạng số thập phân vô hạn tuần hoàn.
(Còn B làm tương tự như A)
Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).
b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .
=> ( đpcm ).