Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
#)Giải :
Bài 1 :
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow N< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow N< 1-\frac{1}{100}\)
\(\Rightarrow N< \frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow N< \frac{3}{4}\)
#~Will~be~Pens~#
Bài 1:
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Rightarrow S< \frac{1}{2}\)
\(\Rightarrow N< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Bài 2:
a) Để A là phân số \(\Leftrightarrow n-2\ne0\)
\(\Leftrightarrow n\ne2\)
Vậy \(n\ne2\)thì A là phân số .
b) Để A là số nguyên
\(\Leftrightarrow n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Tự tìm n
Bài 3:
áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(P=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow P< Q\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(N< 1-\frac{1}{100}\)
\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)
\(a,\)
Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)
b, Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Tự xét bảng
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Bài 1 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
\(\frac{5}{x}=\frac{1+2y}{6}\)
=> x ( 1+2y ) = 5 . 6
=> x ( 2y+1 ) = 30
=> x;2y+1 \(\in\) Ư(30)
vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}
Ta có bảng
2y+1 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
x | 30 | 10 | 6 | 2 | -30 | -10 | -6 | -2 |
y | 0 | 1 | 2 | 7 | -1 | -2 | -3 | -8 |
Vậy các cặp x;y tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\)
Bài 2 , b
(3n+2) \(⋮\) n-1
=> 3(n-1) + 5 \(⋮\) n-1
Vì 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}
n \(\in\) {2;6;0;-4}
bai 1:a=12;b=
bài 1(4 điểm)
a, x:12x12=12 b,102-40+(-10)=x+50
x =12:12x12 52 =x+50
x =12 x = 52-50
x = 2
bài 2 (1 điểm)
5.5.5.5.5.5.5.5.5=59
Bài 3(5 điểm)
a. tìm x:
-10 < x <10
x= -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9
b, Các số đối của các số : -12,8,0,15,-170,-200 lần lượt là:
12,-8,0,-15,170,200
c, so sánh \(\frac{n+1}{n+2}\)và\(\frac{n}{n+3}\)
Chịu
nhớ k đấy