Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=kc\)
\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=kd\)
=> \(ax+by=kc+kd=k\left(c+d\right)=k\cdot k=k^2\)
=>đpcm
Bạn tự vẽ hình nhé
a) Xét tam giác ADE và tam giác ACE có:
AD = AC ( gt )
ED = EC ( E là trung điểm DC )
AE là cạnh chung
=> Tam giác ADE = tam giác ACE ( c,c,c )
b) Vì tam giác ADE = tam giác ACE ( c/m trên )
=> Góc AED = góc AEC ( 2 góc tương ứng )
Xét tam giác DIE và tam giác CIE có:
ED = EC ( E là trung điểm DC )
Góc AED = góc AEC ( c/m trên )
EI là cạnh chung
=> Tam giác DIE = tam giác CIE ( c.g.c )
=> DI = CI ( 2 cạnh tương ứng )
a:
\(\Leftrightarrow x^2-25⋮x^2-4\)
\(\Leftrightarrow x^2-4\inƯ\left(21\right)\)
\(\Leftrightarrow x^2-4\in\left\{-3;-1;1;3;7;21\right\}\)
hay \(x\in\left\{1;-1;5;-5\right\}\)
b:
1: Để A là số nguyên thì \(x^2-x⋮x+1\)
\(\Leftrightarrow x^2+x-2x-2+2⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{0;-2;1;-3\right\}\)
2: Để B là số nguyên thì \(-x\left(x-2\right)-5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Bạn tự vẽ hình nhé
a) Xét tam giác ADE và tam giác ACE có:
AD =AC ( gt )
ED = EC ( E là trung điểm CD )
AE chung
=> Tam giác ADE = tam giác ACE (c.c.c )
b) Vì tam giác ADE = tam giác ACE ( c/m trên )
=> Góc AED = góc AEC ( 2 góc tương ứng )
hay góc IED = góc IEC
Xét tam giác DIE và tam giác CIE có:
ED = EC ( E là trung điểm CD )
Góc IED = góc IEC ( c/m trên )
EI chung
=> Tam giác DIE = tam giác CIE ( c.g.c )
=> DI = CI ( 2 cạnh tương ứng )
c) Ta có góc AED = góc AEC ( c/m trên )
Mà góc AED + góc AEC = \(180^0\) ( 2 góc kề bù )
=> Góc AED = góc AEC = \(\dfrac{180^0}{2}=90^0\)
=> \(DC\perp AE\)
Mà BH // DC ( gt )
=> \(BH\perp AE\) ( Định lý từ vuông góc đến song song )
d) Vì BH // DC ( gt )
=> Góc HBC = góc BCD ( 2 góc so le trong)
và góc DBC = góc BCH ( 2 góc so le trong )
Xét tam giác DBC và tam giác HBC có:
Góc HBC = góc BCD ( c/m trên )
BC chung
Góc DBC = góc BCH ( c/m trên )
=> Tam giác DBC = tam giác HBC ( g.c.g )
=> BD = HC ( 2 cạnh tương ứng )
Vì BH // DC ( gt )
=> Góc IHC = góc IDB ( 2 góc so le trong )
Xét tam giác BIC và tam giác CIH có:
Góc IBD = góc HCI ( c/m trên )
BD = HC ( c/m trên )
Góc IHC = góc IDB ( c/m trên )
=> Tam giác BIC = tam giác CIH ( g.c.g )
=> Góc BID = góc HIC ( 2 góc tương ứng )
Mà góc BID + góc BIH = \(180^0\) ( 2 góc kề bù )
Góc HIC + góc BIH = \(180^0\) ( 2 góc kề bù )
=> Góc DIH = \(180^0\)
=> D ; I ; H thẳng hàng
Chúc bn học tốt
a) \(x^2-\frac{2}{5}x< 0\)
\(\Leftrightarrow x\left(x-\frac{2}{5}\right)< 0\)
\(\Leftrightarrow\begin{cases}x>0\\x< \frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< 0\\x>\frac{2}{5}\end{cases}\) (loại)
\(\Leftrightarrow0< x< \frac{2}{5}\)
b) \(\frac{x-2}{x-6}< 0\)
\(\Leftrightarrow\begin{cases}x>2\\x< 6\end{cases}\) hoặc \(\begin{cases}x< 2\\x>6\end{cases}\) (loại)
\(\Leftrightarrow2< x< 6\)
c) \(\frac{x^2-1}{22}< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}x>1\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< 1\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< 1\)
Bài 2:
a: Ta có: |x-1|<1/2
=>x-1>-1/2 và x-1<1/2
=>x>1/2 và x<3/2
=>1/2<x<3/2
b: Ta có: |2x+5|>5/2
=>2x+5>5/2 hoặc 2x+5<-5/2
=>2x>-5/2 hoặc 2x<-15/2
=>x>-5/4 hoặc x<-15/4
c: Ta có: |x-5|<3
=>x-5>-3 và x-5<3
=>x>2 và x<8
=>2<x<8
mà x là số nguyên
nên \(x\in\left\{3;4;5;6;7\right\}\)