Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
1. a) \(\frac{1}{4}+x=\frac{-5}{6}\)
=> \(x=\frac{-5}{6}-\frac{1}{4}=\frac{-13}{12}\)
Vậy \(x=\frac{-13}{12}\)
b) | 2x-1|=5
=> 2x-1=5 hoặc 2x-1= -5
+) 2x-1=5
=> 2x =5+1=6
=> x=6:2=3
+) 2x-1= -5
=> 2x = -5+1=-4
=> x = -4:2=-2
Vậy x ∊ { 3 ; -2 }
2. * Thu gọn
A= \(4x^2y^2.\left(-2^3y^2\right)\)
A= \(4x^2y^2.\left(-8\right)y^2\)
A= \(4.\left(-8\right).x^2.y^2.y^2\)
A= \(-32x^2y^4\)
* Hệ số: -32
* Phần biến: \(x^2y^4\)
* Bậc: 6
1. a) 14+x=−5614+x=−56
=> x=−56−14=−1312x=−56−14=−1312
Vậy x=−1312x=−1312
b) | 2x-1|=5
=> 2x-1=5 hoặc 2x-1= -5
+) 2x-1=5
=> 2x =5+1=6
=> x=6:2=3
+) 2x-1= -5
=> 2x = -5+1=-4
=> x = -4:2=-2
Vậy x ∊ { 3 ; -2 }
2. * Thu gọn
A= 4x2y2.(−23y2)4x2y2.(−23y2)
A= 4x2y2.(−8)y24x2y2.(−8)y2
A= 4.(−8).x2.y2.y24.(−8).x2.y2.y2
A= −32x2y4−32x2y4
* Hệ số: -32
* Phần biến: x2y4x2y4
* Bậc: 6
Bài 1:
a) Ta có: \(\left(-\frac{5}{4}x^2y\right)\cdot\left(\frac{2}{5}x^3y^4\right)\)
\(=\left(-\frac{5}{4}\cdot\frac{2}{5}\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y\cdot y^4\right)\)
\(=\frac{-1}{2}x^5y^5\)
b) Hệ số là \(\frac{-1}{2}\), phần biến là \(x^5;y^5\); Bậc là 10
Bài 2:
a) Ta có: \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\)
\(=\left(\frac{3}{4}\cdot\frac{-8}{9}\right)\cdot\left(x^2\cdot x^2\cdot x\right)\cdot\left(y\cdot y^3\right)\cdot z\)
\(=-\frac{2}{3}x^5y^4z\)
b)
-Phần biến là \(x^5;y^4;z\)
-Bậc là 10
Thay x=1; y=-1 và z=3 vào biểu thức \(A=\frac{-2}{3}x^5y^4z\), ta được
\(\frac{-2}{3}\cdot1^5\cdot\left(-1\right)^4\cdot3=-2\)
Vậy: -2 là giá trị của biểu thức \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\) tại x=1; y=-1 và z=3
a) Ta có \(x:2=y:-5.\)
=> \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;-10\right).\)
k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\) và \(2x+3y-z=186.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)
Mình chỉ làm 2 câu thôi nhé.
Chúc bạn học tốt!
Bạn này riết quá, mình cũng đang bận nữa :(
b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)
Vậy...
c) Xem lại đề nhé.
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)
Vậy...
e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)
\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)
Vậy...
f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
g) Áp dụng TCDTSBN:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)
\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
Vậy...
h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)
Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)
Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)
Ta có hệ :
\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)
Vậy...
Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\) và \(y+z=x\)
Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)
1.a)
\(C=A.B=-\frac{2}{3}xy^2.\frac{9}{4}x^3y=-\frac{1}{1}.\frac{3}{2}.x^{1+3}.y^{2+1}=-\frac{3}{2}x^4.y^3\)
b)\(C=-\frac{3}{2}x^4.y^3\Rightarrow C_{\left(-1,-2\right)}=-\frac{3}{2}\left(-1\right)^4.\left(-2\right)^3=-\frac{3}{2}.1.\left(-8\right)=\frac{3}{1}.4=12\)
2.a)
\(A=\left(2xy^2\right)^2\left(-\frac{1}{2}x^3.y\right)=\left(4x^2y^{2.2}\right)\left(-\frac{1}{2}x^3y\right)=-2.\left(x^{2+3}y^{4+1}\right)=-2\left(x^5y^5\right)\)
\(A=\left(-2\right)\left(xy\right)^5\) Hệ số =-2; bậc 5 với cả x và y
b) tự thay giống câu (1)
1) Vì theo đề bài \(\frac{x-2}{x-6}>0\Rightarrow x\ne0\)
Gọi phân số là \(\frac{a}{b}\)với \(a>b\) (vì tử số lớn hơn mẫu số thì phân số sẽ lớn hơn 1)
\(\Rightarrow x\ge6\)
2) Ta có: \(\frac{3x+9}{x-4}\) có giá trị nguyên . Với 3x + 9 > x - 4
Nếu x = 1 thì \(\frac{3x+9}{x-4}=\frac{31+9}{1-4}=\frac{40}{-31,3333}\) (loại)
Nếu x = 2 thì \(\frac{3x+9}{x-4}=\frac{32+9}{2-4}=\frac{41}{-2}=-20,5\) (loại)
Nếu x = 3 thì \(\frac{3x+9}{x-4}=\frac{33+9}{3-4}=\frac{42}{-1}=-42\)(chọn)
Nếu x = 4 thì \(\frac{3x+9}{x-4}=\frac{34+9}{4-4}=\frac{43}{0}\)(chọn)
Nếu x = 5 thì \(\frac{3x+9}{x-4}=\frac{35+9}{5-4}=\frac{44}{1}=44\)chọn
..và còn nhiều giá trị khác nữa...
Suy ra x = {-3 ; -4 ; -5 ; 3 ; 4 ; 5 ...}Tương tự ta có bảng sau:
x nguyên dương | 3 | 4 | 5 |
x nguyên âm | -3 | -4 | -5 |
Bài 3. Bí rồi, mình mới lớp 6 thôi!
bài 3: đạt B=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right)\):...:\(\left(-1\frac{1}{100}\right)\)
=\(\frac{1}{2}:\frac{-3}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:\frac{-7}{6}:...:\frac{-101}{100}\)=\(\frac{1}{2}.\frac{-2}{3}.\frac{3}{4}.\frac{-4}{5}.\frac{5}{6}\frac{-6}{7}...\frac{-100}{101}\)(có 50 thừa số âm)
=\(\frac{1.2.3.4...100}{2.3.4...101}=\frac{1}{101}\)
vậy B=\(\frac{1}{101}\)
#HỌC TỐT#
a) \(M=-\frac{1}{4}x^3y^4\left(3x^2y^2\right)=\left(-\frac{1}{4}.3\right)\left(x^3x^2\right)\left(y^4y^2\right)=-\frac{3}{4}x^5y^6\)
Bậc: 11
Hệ số: \(-\frac{3}{4}\)
Biến: x5y6
b) Áp dụng tính chất dãy tỉ số bằng nhau:
\(x=\frac{y}{-2}=\frac{x-y}{1-\left(-2\right)}=\frac{-3}{3}=-1\)
\(\Rightarrow x=-1;y=2\)
Thay x = -1 và y = 2 vào đơn thức M ta được:
\(M=-\frac{3}{4}.\left(-1\right)^5.2^6=48\)
Vậy M = 48 tại x = -1 và y = 2.