Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt hoành độ giao điểm của \(\left(P\right):y=x^2\) và \(\left(d\right):y=2x+3\) là \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\) \(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\).
Khi \(x=3\) thì \(y=x^2=9\), khi \(x=-1\) thì \(y=x^2=1\). Do đó (P) cắt (d) tại \(A\left(3;9\right)\) và \(B\left(-1;1\right)\). Từ đó dễ dàng suy ra \(C\left(3;0\right)\) và \(D\left(-1;0\right)\). Từ đó suy ra \(CD=4\).
Lại có \(AC=1;BD=9\). Do đó \(S_{ABCD}=\dfrac{\left(AC+BD\right).CD}{2}=\dfrac{\left(1+9\right).4}{2}=20\) (đơn vị diện tích)
a) Vẽ đồ thị:
b) - Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)
Theo Cô si 4x+\frac{1}{4x}\ge24x+4x1≥2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1⇔x=41). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A≥2−x+14x+3+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A≥4−x+14x+3+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014A≥x+14x−4x+1+2014=x+1(2x−1)2+2014≥2014
Hơn nữa A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x−1=0 \Leftrightarrow x=\dfrac{1}{4}⇔x=41 .
Vậy GTNN = 2014