
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=4x^2-5x^3+3x-2x^2-7+x\\ =2x^2-5x^3+4x-7\)
Vậy bậc của đa thức A là 3
\(B=6x^2-5x^3-2x-4x^2-7+x\\ =2x^2-5x^3-x-7\)
Vậc bậc của đa thức B là 3

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11

a) Sắp xếp các hạng tử của Q(x) theo lũy thừa giảm dần của biến:
\(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
b) Viết đa thức Q(x) đầy đủ từ lũy thừa bậc cao nhất đến lũy thừa bậc 0:
\(Q\left(x\right)=-5x^6+0x^5+2x^4+4x^3+0x^2-4x-1\)

a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)
\(=6x^5-6x^4+4x^3-x^2-4x+11\)
f(x)-g(x)-h(x)
\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)
\(=16x^5-14x^4+10x^3-7x^2+6x+7\)
b: f(x)+2g(x)=0
\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)
\(\Leftrightarrow2x^2-8x+6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3

f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2
Đa thức có bậc là 5
g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2
Đa thức có bậc là 8.
Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.

a)A(x) = 3x^3 - 4x^4 - 2x^3 + 4x^4 - 5x + 3
=x^3-5x+3
bậc:3
hệ số tự do:3
hệ số cao nhất :3
B(x) = 5x^3 - 4x^2 - 5x^3 - 4x^2 - 5x - 3
=-8x^2-5x+3
bậc:2
hệ số tự do:3
hệ số cao nhất:3
b)A(x)+B(x)=x^3-8^2+10x+6
câu b mik ko đặt tính theo hàng dọc đc thông cảm nha

\(2x-10=0\Leftrightarrow2\left(x-5\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
\(10-5x=0\Leftrightarrow5x=10\Leftrightarrow x=2\)
\(x^2-36=0\Leftrightarrow\left(x-6\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(25x^2-4=0\Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}5x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=-\frac{2}{5}\end{matrix}\right.\)
\(4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{4}\end{matrix}\right.\)
\(4x^2-16=0\Leftrightarrow\left(2x-4\right)\left(2x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(4x^3-x=0\Leftrightarrow x\left(4x^2-1\right)=0\Leftrightarrow x\left(2x-1\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
\(9x-4x^3=0\Leftrightarrow x\left(9-4x^2\right)=0\Leftrightarrow x\left(3-2x\right)\left(3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3-2x=0\\3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
1000000000000*465456743523467*45565879865*545656875/1000000000