\(^4\)+b\(^4\)+c\(^4\)-2a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
$B=(a^4+b^4-2a^2b^2)+c^4-2c^2(a^2-b^2)-4b^2c^2$

$=(a^2-b^2)^2+c^4-2c^2(a^2-b^2)-(2bc)^2$

$=(a^2-b^2-c^2)^2-(2bc)^2$
$=(a^2-b^2-c^2-2bc)(a^2-b^2-c^2+2bc)$

$=[a^2-(b+c)^2][a^2-(b-c)^2]$

$=(a-b-c)(a+b+c)(a-b+c)(a+b-c)$

22 tháng 10 2021

a) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)

\(=3\left(a+b\right)\left(a-b\right)\)

22 tháng 10 2021

b) \(x^4+2x^2y+y^2\)

\(=\left(x^2+y\right)^2\)

4 tháng 3 2020

\(x^5-4x^3-5x\)

\(=x\left(x^4-4x^2-5\right)\)

\(=x\left(x^4-5x^2+x^2-5\right)\)

\(=x\left[x^2\left(x^2-5\right)+\left(x^2-5\right)\right]\)

\(=x\left(x^2+1\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)

4 tháng 3 2020

a/

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2.\)

=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ac\right)^2\) 

=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2-4\left(ca\right)^2\)

áp dụng hằng đẳng thức  \(a^2-b^2-c^2=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2\) ta đc

\(\left(a^2-b^2+c^2\right)-4\left(ac\right)^2\)

=> \(\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)

26 tháng 5 2017

1. (a2+b2+ab)2-a2b2-b2c2-c2a2

=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2

=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2

=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)

=(a2+b2)[(a+b)2-c2]

=(a2+b2)(a+b+c)(a+b-c)

2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2

3. a(b3-c3)+b(c3-a3)+c(a3-b3)

=ab3-ac3+bc3-ba3+ca3-cb3

=a3(c-b)+b3(a-c)+c3(b-a)

=a3(c-b)-b3(c-a)+c3(b-a)

=a3(c-b)-b3(c-b+b-a)+c3(b-a)

=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)

=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)

=(a-b)(c-b)(a2+ab+2b2+bc+c2)

4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)

5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]

=2b(3a2+b2)

6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2+y2+xy-2x-y+1)

7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)

(Đúng nhớ like nhá !)

26 tháng 5 2017

Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi

19 tháng 3 2020

mất trọng lực 

26 tháng 11 2019

Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\)  lien tiep la duoc 

Chuc bn thanh cong

27 tháng 11 2019

svác-xơ ngược dấu.

\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)

Tương tự 

\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)

\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)

Cộng lại ta được:

\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)

31 tháng 7 2017

a,x^4+2x^3-4x-4

=(x^3+2x^3)-(4x+4)

=x^3(x+2)-4(x+2)

=(x^3-4)(x+2)

31 tháng 7 2017

\(X^4+2X^3-4X-4\)

\(=\left(X^2\right)^2+2X^3-4X-2^2\)

\(=\left[\left(X^2\right)^2-2^2\right]+\left[2X^3-4X\right]\)

\(=\left(X^2+2\right)\left(X^2-2\right)+2X\left(X^2-2\right)\)

\(=\left(X^2-2\right)\left(X^2+2+2X\right)\)

24 tháng 4 2017

Giải bài 1 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 5 2018

a) a2b24a+4

=(a2-4a+4)-b2

=(a-2)2-b2

=(a-2-b)(a-2+b)a2−b2−4a+4

b) x2+2x3

=x2-x+3x-3

=x(x-1)+3(x-1)

=(x+3)(x-1)x2+2x−3

c) 4x2y2(x2+y2)2

=(2xy-x2-y2)(2xy+x2+y2)

=-(x-y)2(x+y)2

d) 2a354b3

=2(a3-27b3)

=2(a-3b)(a2+3ab+9b2)

23 tháng 10 2017

=a, a(b2+c2)+b(a2+c2)+c(a2+b2)+2abc

= ab2+ac2+ba2+bc2+ca2+cb2+2abc

= c2(a+b)+ab(a+b)+c(a2+b2+2ab)

= c2(a+b)+ab(a+b)+c(a+b)2

= (a+b)\(\left[c^2+ab+c\left(a+b\right)\right]\)

= (a+b)(c2+ab+ca+cb)

= (a+b)\(\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

=(a+b)(a+c)(b+c)

b, a(b-c)3+b(c-a)3+c(a-b)3

= a(b-c)3-b\(\left[\left(b-c\right)+\left(a-b\right)\right]\)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)2(a-b)-3b(b-c)(a-b)2-b(a-b)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(b-c+a-b)-b(a-b)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(a-c)-b(a-b)3+c(a-b)3

= (b-c)3(a-b)-3b(b-c)(a-b)(a-c)-(a-b)3(b-c)

= (b-c)(a-b)\(\left[\left(b-c\right)^2-3b\left(a-c\right)-\left(a-b\right)^2\right]\)

=(b-c)(a-b)(b2-2bc+c2-3ab+3bc-a2+2ab-b2)

= (b-c)(a-b)(c2-a2+bc-ab)

= (b-c)(a-b)\(\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

= (b-c)(a-b)(c-a)(c+a+b)

c, a2b2(a-b)+b2c2(b-c)+c2a2(c-a)

= a2b2(a-b)-b2c2\(\left[\left(a-b\right)+\left(c-a\right)\right]\)+c2a2(c-a)

= a2b2(a-b)-b2c2(a-b)-b2c2(c-a)+c2a2(c-a)

= b2(a-b)(a2-c2)+c2(c-a)(a2-b2)

= b2(a-b)(a-c)(a+c)-c2(a-c)(a-b)(a+b)

= (a-c)(a-b)\(\left[b^2\left(a+c\right)-c^2\left(a+b\right)\right]\)

= (a-c)(a-b)(b2a+b2c-c2a-c2b)

= (a-c)(a-b)\(\left[a\left(b^2-c^2\right)+bc\left(b-c\right)\right]\)

= (a-c)(a-b)\(\left[a\left(b-c\right)\left(b+c\right)+bc\left(b-c\right)\right]\)

= (a-c)(a-b)(b-c)\(\left[a\left(b+c\right)+bc\right]\)

= (a-c)(a-b)(b-c)(ab+ac+bc)

d, a4(b-c)+b4(c-a)+c4(a-b)

= a4(b-c)-b4[(b-c)+(a-b)]+c4(a-b)
= (b-c)(a4-b4)+(a-b)(c4-b4)
= (b-c)(a2-b2)(a2+b2)+(a-b)(c2-b2)(c2+b2)
= (b-c)(a-b)(a+b)(a^2+b^2)-(a-b)(b-c)(b+c)(b2+c2)
= (b-c)(a-b)(a3+ab2+ba2+b3-bc2-b3-cb2-c3)

= (b-c)(a-b)(a3+ab2+ba2-bc2-c3-cb2)
= (b-c)(a-b)(a3-c3)+b2(a-c)+b(a2-c2)
= (b-c)(a-b)(a-c)(a2+ac+c2)+b2(a-c)+b(a-c)(a+c)
= (b-c)(a-b)(a-c)(a2+ac+c2+b2+ab+ac)

= (a-b)(b-c)(c-a)(a2+b2+c2+ab+bc+ca)

4 tháng 10 2018

bạn làm giỏi thế có phương pháo nào ko mách mk

22 tháng 8 2018

xin lỗi bài này mình không biết

3 tháng 1 2018

Áp dụng Cauchy, ta có:

    \(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)

\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)

Tượng tự:

 \(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)

\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)

\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)

Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)

\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)

Dấu = xảy ra khi a=b=1

3 tháng 1 2018

Áp dụng bđt cosi ta có : 

A < = 1/2a^2b+2/ab^2  +  1/2ab^2+2a^2b

= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)

< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)

Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)

=> \(\sqrt{\frac{1}{ab}}\)< = 1

=> 1/ab < = 1

=> ab > =1

=> A < = 1/2.1 = 1/2

Dấu "=" xảy ra <=> a=b=1

Vậy GTLN của A = 1/2 <=> a=b=1

Tk mk nha