Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi I chảy là x (x>0) => thời gian vòi I chảy trong 1h là 1/x
Thời gian vòi II chảy là y (y>0)=>thời gian vòi II chảy trong 1h là 1/y
HPT: 1/x+1/y=1/6 (1)
4/x+7/y=5/6(2)
=> 1/x=1/9=>x=9(h)
1/y=1/18=>y=18(h)
gọi vòi 1 mỗi giờ chảy được x bể
suy ra 1 giờ vòi 1 chảy được \(\frac{1}{x}\)bể
gọi vòi 2 mỗi giờ chảy được y bể
suy ra vòi 2 chảy 1 giờ được \(\frac{1}{y}\)bể
ta có cả 2 vòi cùng chảy sau 6 giờ đầy bể =>\(\frac{6}{x}\)+ \(\frac{6}{y}\)= 1 ( bể)
nhân cả hai vế với 2 => \(\frac{12}{x}\)+\(\frac{12}{y}\)= 2 (bể) (1)
nếu mở vòi I trong 4 h và mở vòi II trong 7 h thì đầy 5/6 bể => \(\frac{4}{x}\)+ \(\frac{7}{y}\)=\(\frac{5}{6}\) ( bể)
nhân cả hai vế với 3 => \(\frac{12}{x}\)+ \(\frac{21}{y}\) = \(\frac{15}{6}\) (bể) (2)
trừ từng vế của 1 và hai ta được \(\frac{12}{x}\)+\(\frac{12}{y}\)- \(\frac{12}{x}\)- \(\frac{21}{y}\)= 2- \(\frac{15}{6}\)
\(\frac{-9}{y}\)= \(\frac{-1}{2}\)
=> y = 18
=> \(\frac{6}{x}\)+ \(\frac{6}{18}\)= 1
<=> \(\frac{6}{x}\)= \(\frac{2}{3}\)
<=> x = 9
vậy vòi I sau 9 giờ chảy đầy bể
vòi II sau 18 h chảy đầy bể
trong một giờ
mỗi vòi lần lượt chảy được \(\frac{1}{4},\frac{1}{5},\frac{1}{6}\) phần thể tích bể
Do đó nếu cả ba vòi cùng chảy thì trong 1 h có thể chảy được \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{15+12+10}{60}=\frac{37}{60}\) phần bể
Do đó cần \(\frac{60}{37}\)h để 3 vòi chảy đầy bể