\(x^2+x+m-2=0\) có hai...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

24 tháng 5 2017

Để PT có 2 nghiệm phân biệt:

\(\Delta'=m^2-2\left(m^2-2\right)>0\)

\(< =>4>m^2< =>-2< m< 2\left(1\right)\)

Theo Vi-ét

\(x_1+x_2=-m,x_1x_2=\frac{m^2-2}{2}\)

\(=>A=2x_1x_2+x_1+x_2-4=m^2-2-m-4=m^2-m-6< =4-\left(-2\right)-6=0\)

\(=>\)Max \(A=0\)

Dấu "=" xảy ra khi m=-2

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

13 tháng 5 2017

(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)

18 tháng 3 2019

a. x2 -6m + 2m + 5 =0 (có a=1 ; b=-6 ; c=2m+5)

Ta có Δ=b2 - 4ac ⇒ Δ=26-8m

Để pt có 2 nghiệm thì Δ≥0 ⇒ 26-8m≥0 ⇔ m≤\(\frac{-13}{4}\)

Vì pt có 2 nghiệm nên theo hệ thúc Vi-ét ta có: x1 + x2 = 6 ; x1x2=2m+5

Ta có: x12 + x22 = 26 ⇔ x12 + 2x1x2 + x22 - 2x1x2 = 26 ⇔ \(\left(x_1+x_2\right)^2\) - 2x1x2 = 26

Thay số: 62 - 2(2m+5) = 26 ⇒ 36 - 4m - 10 = 26 ⇒ 4m = 0 ⇒ m=0.

Vậy với m=0 thì ...........

NV
19 tháng 3 2019

a/ \(\Delta'=9-\left(2m+5\right)=4-2m\ge0\Rightarrow m\le2\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m+5\end{matrix}\right.\)

\(x_1^2+x_2^2=26\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=26\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-26=0\)

\(\Leftrightarrow6^2-2\left(2m+5\right)-26=0\)

\(\Leftrightarrow-4m=0\)

\(\Rightarrow m=0\) (thỏa mãn)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề