K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

theo mình là đáp án B

gọi M là trung điểm BC suy raSM=\(\frac{\sqrt{13}}{2}\)(bằng nử BC) và Mcách đều B,S,C

trong mp(ASM).từ M kẻ đường thẳng d song song với AS

gọi Nlà trung điểm AS.Trong mp(ASM) từ N kẻ NI song song SM cắt d tại I

nhận thấy I chính là tâm mặt cầu ngoại tiếp tứ diện.dựa vào tam giác vuông SIM suy ra R=IS =\( \sqrt{SM^2 +IM^2}\) =\(x =\frac{ \sqrt{14}}{2}\)

10 tháng 12 2016

yeu

11 tháng 12 2016

Bạn nên vẽ hình chóp đáy là tam giác SBC vuông ở S, AS là đường cao hình chóp.

Gọi E là trung điểm BC, khi đó E là tâm đường tròn ngoại tiếp tam giác SBC, vẽ Ex vg (SBC).

SA // Ex, trong mp(SAIE) vẽ đường trung trực MO của SA (M, O lần lượt thuộc SA, Ex).

Khi đó SMOE là hình chữ nhật, tâm mặt cầu ngoại tiếp hình chóp SABC là O.

\(SE=\frac{BC}{2}=\frac{a\sqrt{13}}{2}\) ;

OE = SM = SA/2 = a/2

\(R=OS=\sqrt{OE^2+SE^2}=\frac{a\sqrt{14}}{2}\)

 

27 tháng 2 2017

Chọn D.

18 tháng 1 2019

Đáp án B

Gọi M,N lần lượt là trung điểm SC, AB

Vì ΔSAB vuông góc tại S nên N là tâm đường tròn ngoại tiếp ΔSAB .

Trong mặt phẳng (MSN) dựng hình chữ nhật MSNO thì ON là trục đường tròn ngoại tiếp ΔSAB và OM là đường trung trực của đoạn SC trong mặt phẳng (OSC)

27 tháng 4 2017

Gọi I là tâm cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc (SAB), vì J cách đều 3 điểm S, A, B nên J cũng cách đều 3 điểm S, A, B.

Vì tam giác SAB vuông đỉnh S nên J là trung điểm của AB.

Ta có SJ = .

Do SC vuông góc (SAB) nên IJ // SC.

Gọi H là trung điểm SC, ta có SH = IJ = .

Do vậy, IS2 = IJ2 + SJ2 = (a2 + b2 + c2)/4 và bán kính hình cầu ngoại tiếp S.ABC là

r = IS = .

Diện tích mặt cầu là:

S = 4 πr2 = π(a2 + b2 + c2) (đvdt)

Thể tích khối cầu là :
(đvtt)



1 tháng 6 2017

Giải bài 10 trang 49 sgk Hình học 12 | Để học tốt Toán 12

* Gọi M là trung điểm của tam giác SAB.

Tam giác SAB là tam giác vuông tại S có SM là đường trung tuyến nên ta có:

Giải bài 10 trang 49 sgk Hình học 12 | Để học tốt Toán 12

⇒ M là tâm đường tròn ngoại tiếp tam giác SAB.

* Kẻ Mt ⊥ (SAB), ta có: Mt// SC và Mt là trục đưởng tròn ngoại tiếp tam giác SAB.

Trong mp(Mt, SC), đường trung trực của SC cắt Mt tại điểm I.

Ta có: IS = IC. (1)

Và IS = IB = IA (2).

Từ (1) và (2) suy ra: IA = IB= IC = IS

Do đó, I là tâm mặt cầu ngoại tiếp hình chóp S.ABC

Bán kính mặt cầu ngoại tiếp hình chóp là :

Giải bài 10 trang 49 sgk Hình học 12 | Để học tốt Toán 12

3 tháng 9 2018

27 tháng 4 2018

7 tháng 11 2021

Bán kính mặt cầu ngoại tiếp hình chóp đã cho là R = \(\dfrac{1}{2}\sqrt{a^2+b^2+c^2}\).

Diện tích mặt cầu cần tìm là S = 4\(\pi\)R= (a2+b2+c2)\(\pi\).

Thể tích khối cầu cần tìm là V = 4/3.\(\pi\)R3 = \(\dfrac{\pi}{6}\sqrt{a^2+b^2+c^2}^3\).

9 tháng 3 2017