Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta thấy \(\widehat{A}+\widehat{D}=180^o\) và 2 góc này ở vị trí trong cùng phía nên AB // CD
Vậy AB // CD
b) Ta có: \(\widehat{A}+\widehat{D}+\widehat{C}+\widehat{ABC}=360^o\) ( vì tổng các góc của 1 hình tứ giác bằng \(360^o\) )
\(\Rightarrow120^o+60^o+30^o+\widehat{ABC}=360^o\)
\(\Rightarrow\widehat{ABC}+210^o=360^o\)
\(\Rightarrow\widehat{ABC}=150^o\)
Vì AB // CD nên \(\widehat{C}=\widehat{xBC}=30^o\) ( so le trong )
Vậy \(\widehat{ABC}=150^o,\widehat{xAB}=30^o\)
Cho góc C=120 và góc D=60 và a vuông góc với AB, Vẽ hình?
a)Chứng minh a//b
b)Chứng minh b vuông gó AB
Đề không được rõ lắm. Vẽ hình thế này vẫn không sai nek:
C a A B D
a)
Ta có: \(\hept{\begin{cases}\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=60^o+\widehat{BAC}\\\widehat{BAE}=\widehat{CAE}+\widehat{BAC}=60^o+\widehat{BAC}\end{cases}\Rightarrow\widehat{DAC}=\widehat{BAE}}\)
b) Xét \(\Delta\)DAC và \(\Delta\)BAE có:
\(\hept{\begin{cases}AD=AB\\\widehat{DAC}=\widehat{BAE}\\AC=AE\end{cases}\Rightarrow\Delta DAC=\Delta BAE\left(cgc\right)}\)
=> DC=BE (2 cạnh tương ứng)
c) Theo câu (b) ta có: \(\Delta DAC=\Delta BAE\)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)hay \(\widehat{IDA}=\widehat{IBK}\left(1\right)\)
Gọi I là giao của DC và AB
Xét \(\Delta IBK:\widehat{IBK}+\widehat{IKB}+\widehat{BIK}=180^o\left(2\right)\)
Xét \(\Delta AID:\widehat{AID}+\widehat{DAI}+\widehat{ADI}=180^o\left(3\right)\)
Mà \(\widehat{BIK}=\widehat{AID}\)(2 góc đối đỉnh)(4)
Từ (1)(2)(3)(4) => \(\widehat{IKB}=\widehat{IAD}=60^o\)hay \(\widehat{DKB}=60^o\)
Ta có: \(\widehat{EKC}=\widehat{DKB}=60^o;\widehat{DKE}=\widehat{BKC}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DKB}+\widehat{DKE}+\widehat{EKC}+\widehat{BKC}=360^o\)
\(\Rightarrow2\widehat{DKB}+2\widehat{BKC}=360^o\)
\(\Rightarrow2\cdot60^o+2\cdot\widehat{BKC}=360^o\)
\(\Rightarrow\widehat{BKC}=120^o\)
1. ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\)
mà \(\widehat{B}=60;\widehat{C}=30\)
=> \(\widehat{A}=90\)
=> tam giác ABC vuông.
b. xét tam giác ABI và tam giác CDI có:
AI = IC ( I là trung điểm AC)
ID = IB (gt)
góc DIC = góc AIB (đối đỉnh)
=> tam giác ABI = tam giác CDI (c-g-c)
=> góc IAB = góc ICD
mà IAB = 90 độ (theo câu a)
=> ICD = 90 độ
=> CD // AB
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
hình vẽ đâu bn
bn phải vẽ ình mk mới giúp đc