\(\dfrac{1}{2}\).(1+2)+\(\dfrac{1}{3}\).(1+2+3)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{20}\cdot\dfrac{20\cdot21}{2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{21}{2}\)

\(=\dfrac{2+3+4+...+21}{2}=\dfrac{\dfrac{20\left(21+2\right)}{2}}{2}=10\cdot\dfrac{23}{2}=5\cdot23=115\)

20 tháng 3 2017

a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)

=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)

=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)

=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)

b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)

=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)

c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)

=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)

= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)

d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)

=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)

=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)

e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)

=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)

23 tháng 6 2018

a,

\(\left(20+9\dfrac{1}{4}\right):2\dfrac{1}{4}=\left(20+\dfrac{37}{4}\right):\dfrac{9}{4}\\ =\dfrac{117}{4}\cdot\dfrac{4}{9}\\ =\dfrac{117}{9}=13\)

b,

\(\left(6-2\dfrac{4}{5}\right)\cdot3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\\ =\left(6-\dfrac{14}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\\ =\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\\ =10-\dfrac{32}{5}\\ =\dfrac{18}{5}\)

c,

\(\dfrac{32}{15}:\left(-1\dfrac{1}{5}+1\dfrac{1}{3}\right)\\ =\dfrac{32}{5}:\left(-\dfrac{6}{5}+\dfrac{4}{3}\right)\\ =\dfrac{32}{5}:\dfrac{2}{15}\\ =\dfrac{32}{5}\cdot\dfrac{15}{2}\\ =48\)

23 tháng 6 2018

a, ( 20 + \(9\dfrac{1}{4}\) ) : \(2\dfrac{1}{4}\)

= ( 20 + \(\dfrac{37}{4}\) ) : \(\dfrac{9}{4}\)

= ( \(\dfrac{80}{4}\) + \(\dfrac{37}{4}\) ) . \(\dfrac{4}{9}\)

= \(\dfrac{117}{4}\) . \(\dfrac{4}{9}\)

= \(\dfrac{117}{9}\) = 13

b, ( 6 - \(2\dfrac{4}{5}\) ) . \(3\dfrac{1}{8}\) - \(1\dfrac{3}{5}\) : \(\dfrac{1}{4}\)

= ( 6 - \(\dfrac{14}{5}\) ) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\) . 4

= ( \(\dfrac{30}{5}\) - \(\dfrac{14}{5}\) ) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\) . 4

= \(\dfrac{16}{5}\) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\). 4

= 10 - \(\dfrac{32}{5}\)

= \(\dfrac{50}{5}\) - \(\dfrac{32}{5}\)

= \(\dfrac{18}{5}\)

c, \(\dfrac{32}{15}\) : ( -\(1\dfrac{1}{5}\) + \(1\dfrac{1}{3}\) )

= \(\dfrac{32}{15}\) : ( \(\dfrac{-6}{5}\) + \(\dfrac{4}{3}\) )

= \(\dfrac{32}{15}\) : ( \(\dfrac{-18}{15}\) + \(\dfrac{20}{15}\) )

= \(\dfrac{32}{15}\) : \(\dfrac{2}{15}\)

= \(\dfrac{32}{15}\) . \(\dfrac{15}{2}\)

= 16

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)

a: \(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{45}{4}\cdot\dfrac{2}{15}\)

\(=\dfrac{77}{12}\cdot\dfrac{4}{11}+\dfrac{3}{2}\)

\(=\dfrac{7}{3}+\dfrac{3}{2}=\dfrac{23}{6}\)

b: \(=\left(\dfrac{3}{5}+\dfrac{415}{1000}-\dfrac{3}{200}\right)\cdot\dfrac{8}{3}\cdot\dfrac{1}{4}\)

\(=\dfrac{600+415-15}{1000}\cdot\dfrac{2}{3}=\dfrac{2}{3}\)

c: \(=\dfrac{28}{15}\cdot\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right)\cdot\dfrac{3}{7}\)

\(=\dfrac{7}{5}-\dfrac{3}{4}\cdot\dfrac{3}{7}=\dfrac{7}{5}-\dfrac{9}{28}=\dfrac{151}{140}\)

20 tháng 4 2017

các bạn phại đổi kiểu chữ để làm bài này (VNI) , (TELEX)

20 tháng 4 2017

vni

12 tháng 4 2017

Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-1-\dfrac{1}{2}-...-\dfrac{1}{10}\)

\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\)

Vậy \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\)

25 tháng 7 2017

\(n\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)

b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)

\(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)

25 tháng 7 2017

Làm dần dần và làm từ từ, suy ra được nhiều cách giải.

a) \(\dfrac{n}{n+1}\)\(\dfrac{n+2}{n+3}\)

+ Cách 1:

\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)

\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)

\(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)

\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

+ Cách 2:

Ta so sánh: \(n\left(n+3\right)\)\(\left(n+1\right)\left(n+2\right)\)

\(n\left(n+3\right)=nn+3n=n^2+3n\)

\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

b) \(\dfrac{n}{2n+1}\)\(\dfrac{3n+1}{6n+3}\)

Ta so sánh: \(n\left(6n+3\right)\)\(\left(2n+1\right)\left(3n+1\right)\)

\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)

\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)

\(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}\)\(\dfrac{10^8}{10^8-3}\)

\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)

d) \(\dfrac{3^{17}+1}{3^{20}+1}\)\(\dfrac{3^{20}+1}{3^{23}+1}\)

(đang tìm cách làm, và thêm vài cách khác)

2 tháng 3 2018

\(a.\dfrac{3}{5}-\dfrac{-7}{10}-\dfrac{13}{-20}=\dfrac{12}{20}-\dfrac{-14}{20}-\dfrac{-13}{20}=\dfrac{12-\left(-14\right)-\left(-13\right)}{20}=\dfrac{39}{20}\)

\(b.\dfrac{3}{4}+\dfrac{-1}{3}-\dfrac{5}{18}=\dfrac{3}{4}+\left(\dfrac{-6}{18}-\dfrac{5}{18}\right)=\dfrac{3}{4}+\dfrac{-11}{18}=\dfrac{27}{36}-\dfrac{-22}{36}=\dfrac{49}{36}\)

\(c.\dfrac{3}{13}-\dfrac{5}{-8}+\dfrac{-1}{2}=\dfrac{3}{13}-\left(\dfrac{5}{-8}+\dfrac{-4}{8}\right)=\dfrac{3}{13}-\dfrac{1}{8}=\dfrac{24}{104}-\dfrac{13}{104}=\dfrac{11}{104}\)

\(d.\dfrac{1}{2}+\dfrac{1}{-3}=\dfrac{3}{6}+\dfrac{-2}{6}=\dfrac{1}{6}\)

2 tháng 3 2018

\(a,\dfrac{3}{5}-\dfrac{-7}{10}-\dfrac{13}{-20}\)

\(=\dfrac{12}{20}+\dfrac{14}{20}+\dfrac{13}{20}\)

\(=\dfrac{12+14+13}{20}\)

\(=\dfrac{39}{20}\)

\(b,\dfrac{3}{4}+\dfrac{-1}{3}-\dfrac{5}{18}\)

\(=\dfrac{27}{36}+\dfrac{-12}{36}-\dfrac{10}{36}\)

\(=\dfrac{27+\left(-12\right)-10}{36}\)

\(=\dfrac{5}{36}\)

\(c,\dfrac{3}{13}-\dfrac{5}{-8}+\dfrac{-1}{2}\)

\(=\dfrac{24}{104}-\dfrac{-65}{104}+\dfrac{-52}{104}\)

\(=\dfrac{24-\left(-65\right)+\left(-52\right)}{104}\)

\(=\dfrac{37}{104}\)

\(d,\dfrac{1}{2}+\dfrac{1}{-3}\)

\(=\dfrac{3}{6}+\dfrac{-2}{6}\)

\(=\dfrac{3+\left(-2\right)}{6}\)

\(=\dfrac{1}{6}\)