Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đầu là a
Ta có 10 số đó sẽ là:
a;A+1;A+2;A+3;a+4;...;a+10
vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên
Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10
Gọi 70 số tự nhiên liên tiếp đó lần lượt là: n,n+1,n+2,n+3,...n+69
=n+(n+1)+(n+2)+(n+3)+...+(n+69)
=70n+(0+1+2+3+...+69)
=70n+ [\(\left(69+0\right)\cdot70\)] (Công thức tính tổng các số hạng liên tiếp)
=70n+ 4830
Ta có: 4830 không chia hết cho 18
=> Tổng đó không chia hết cho 18
Gọi 70 stn lien tiếp đó là: X, X+ 1, X+ 2, …, X+ 69
Theo bài ra ta có: X+ X+ 1+ X+ 2+...+X+69
=70* X + 2415
Vi 70* X là có tận cùng là 0 cộng với số có tận cùng là 5 sẽ là số có tận cùng là 5. Vậy tổng 70 stn liên tiếp là 1 số lẻ nên không chia hết cho 18 ( vì 18 là số chẵn)
Hok tốt
vì số tự nhiên a chia cho 24 được số dư là 10 nên a = 24k + 10
Ta có
a = 24k + 10 = 2 x 12k + 2.5 = 2 . ( 12k + 5 ) chia hết cho 2
=> a chia hết cho 2
ta có :
24k ko chia hết cho 4
10 ko chia hết cho 4
=> 24k + 10 ko chia hết cho 4
=> a ko chia hết cho 4
Tổng 3 số tự nhiên liên tiếp có dạng:
(A-1)+(A)+(A+1)
Phá ngoặc ra, ta có: A x 3 - 1 + 1
A x 3 ( cùng bớt đi a + 1)
Tổng 3 số tự nhiên liên tiếp chia hết cho 3
có, vì có 1 s0ố chia het cho 3; 1 so chia 3 du 1 và 1 số chia 3 du 2
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
B1:
\(A=2+2^2+2^3+...+2^{10}\\ \Rightarrow2A=2^2+2^3+2^4+...+2^{11}\\ 2A-A=\left(2^2+2^3+2^4+...+2^{11}\right)-\left(2+2^2+2^3+...+2^{10}\right)\\ A=2^{11}-1=2048-1=2047\)
B2:
Gọi số đó là a (ĐK: a ∈ N*)
Ta có: a chia cho 148 dư 111
\(\Rightarrow a=148b+111\left(b\in N\right)\)
Mà \(148b⋮37;111⋮37\)
\(\Rightarrow148b+111⋮37\Leftrightarrow a⋮37\)
B3:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2 (ĐK: a ∈ N)
Ta có: a + a + 1 + a + 2 = (a + a + a) + (1 + 2) = 3a + 3 = 3(a + 3) ⋮ 3
Vậy tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
B4:
Gọi 4 số tự nhiên liên tiếp là a; a+1; a+2; a+3 (ĐK: a ∈ N)
Ta có: a + a + 1 + a + 2 + a + 3 = (a + a + a + a) + (1 + 2 + 3) = 4a + 6
Mà \(4a⋮4\); \(6⋮̸4\)
\(\Rightarrow4a+6⋮4̸\)
Vậy tổng của 4 số tự nhiên liên tiếp không chia hết cho 4