Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{17^{18}+1}{17^{19}+1}< 1\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17(17^{17}+1)}{17(17^{18}+1)}=B\)
\(\Rightarrow A< B\)
b, Tương tự câu a
a)Ta có : A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}\) = B
Vậy A < B
b) Làm tương tự như câu A
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+17}{17^{19}+17}\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{17}+1}{17^{18}+1}=B\)
=> A < B
1) Phân tích A ra :
A= 1717.17+\(\frac{1}{17^{18}.17}\)+1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.
Mà 1718>1/1718 nên suy ra A>B
2) Bài nay tương tự bài trên.
2/(2012+2013) < 2/(2012 + 2012) = 2/ (2.2012) = 1/2012
2009/(2012+2013) < 2009/2012
=> 2011/(2012+2013) = 2/(2012+2013) + 2009/(2012+2013) < 1/2012 + 2009/2012
=> 2011/(2012+2013) < 2010/2012 (a)
2012/(2012+2013) < 2012/2013 (b)
lấy (a) + (b) => (2011+2012)/(2012+2013) < 2010/2012 + 2012/2013
vậy B < A
Bài 1:
Ta thấy A < 1
=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy A < B
Bài 2:
Ta thấy C < 1
=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C < D
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
Ta có : \(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=1+\frac{13}{10^{17}-8}\)
Lại có B = \(\frac{10^{17}-13+13}{10^{17}-13}=1+\frac{13}{10^{17}-13}\)
Nhận thấy 1017 - 8 > 1017 - 13
=> \(\frac{13}{10^{17}-8}< \frac{13}{10^{17}-13}\)
=> \(1+\frac{13}{10^{17}-8}< 1+\frac{13}{10^{17}-13}\)
=> A < B
\(B=\frac{17}{10}+\frac{17}{40}+\frac{17}{188}+\frac{17}{154}+\frac{17}{238}\)
\(B=\frac{17}{2.5}+\frac{17}{8.5}+\frac{17}{11.8}+\frac{17}{11.14}+\frac{17}{14.17}\)
\(\frac{3}{17}B=\frac{3}{2.5}+\frac{3}{8.5}+\frac{3}{11.8}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(\frac{3}{17}B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)
\(\frac{3}{17}B=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)
\(B=\frac{15}{34}:\frac{3}{17}=\frac{15}{34}.\frac{17}{3}=\frac{5}{2}\)
Học tốt!!!