\(\frac{1}{1.3}\))(1+\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(C=\left[1+\frac{1}{1\cdot3}\right]\left[1+\frac{1}{2\cdot4}\right]...\left[1+\frac{1}{2014\cdot2016}\right]\)

\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot...\cdot\frac{4060225}{4060224}\)

\(=\frac{2\cdot2}{1\cdot3}\cdot\frac{3\cdot3}{2\cdot4}\cdot\frac{4\cdot4}{3\cdot5}\cdot...\cdot\frac{2015\cdot2015}{2014\cdot2016}\)

\(=\frac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot2015\cdot2015}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot2014\cdot2016}\)

Để ý kĩ thì các thừa số dưới mẫu so với trên tử giống nhau chỉ khác 2016 nên C bằng:

C = 2*2*3*3*4*4*...*2015*2015/1*2*3*3*4*4*5*5*...*2015*2015*2016 = 1/2016

13 tháng 7 2017

Ta có : (a-1)(a+1)=a2+a-a-1=a2-1

      \(\Rightarrow\)(a-1)(a+1)+1=a2

Từ đó ta có :

\(C=\frac{2^2}{1.3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{2015^2}{2014\cdot2016}\)

\(\Rightarrow\)\(C=\left(\frac{2\cdot3\cdot4\cdot...\cdot2015}{1\cdot2\cdot3\cdot...\cdot2014}\right)\cdot\left(\frac{2\cdot3\cdot4\cdot...2015}{3\cdot4\cdot5\cdot...\cdot2016}\right)\)

\(\Rightarrow\)\(C=\frac{2015}{1}\cdot\frac{1}{2016}\)

\(\Rightarrow\)\(C=\frac{2015}{2016}\)

26 tháng 2 2017

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.4}.....\frac{2015^2}{2014.2016}\)

\(=\frac{\left(2.3.4....2015\right)\left(2.3.4...2015\right)}{\left(1.2.3....2014\right)\left(3.4.5....2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

26 tháng 2 2017

\(\frac{2015}{1008}\)

27 tháng 5 2020

cảm ơn nhé

hihi

15 tháng 8 2018

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)+...+\left(1+\frac{1}{2014\cdot2016}\right)=\frac{x}{1008}\)

\(\Rightarrow\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot...\cdot\frac{4060225}{4060224}=\frac{x}{1008}\)

\(\Rightarrow\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2015\cdot2015\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2014\cdot2016\right)}=\frac{x}{1008}\)

\(\Rightarrow\frac{\left(2\cdot3\cdot4\cdot...\cdot2015\right)\left(2\cdot3\cdot4\cdot...\cdot2015\right)}{\left(1\cdot2\cdot3\cdot...\cdot2014\right)\left(3\cdot4\cdot5\cdot...\cdot2016\right)}=\frac{x}{1008}\)

\(\Rightarrow\frac{2015\cdot2}{1\cdot2016}=\frac{x}{1008}\)

\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\)

\(\Rightarrow x=2015\)

6 tháng 4 2018

https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gddt-hoang-hoa-2014-2015/

vào đây gợi ý nhé

k mik đi

@_@

6 tháng 4 2018

đây nè

Đáp án và đề thi HSG toán 6 phòng GD&ĐT Hoằng Hóa 2014-2015

8 tháng 4 2016

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)

\(A=\frac{2.3.4...2015}{1.2.3...2014}.\frac{2.3.4...2015}{3.4.5...2016}\)

\(A=2015.\frac{1}{1008}\)

\(A=\frac{2015}{1008}\)