Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)
b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)
d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+2\sqrt{12}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+4\sqrt{3}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(8+4\sqrt{3}\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}\)
\(=\sqrt{\left(4-3\right)\cdot4}\)
\(=\sqrt{1\cdot4}\)
\(=\sqrt{4}\)
\(=2\)
b) \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(5\sqrt{2}-7\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-5\sqrt{2}+7\)
\(=0+14\)
\(=14\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
dài quá ==' cả d, e, f nữa ==' có j rảnh lm cho nhé :D
a: \(=\sqrt{5}-3\sqrt{5}-4\sqrt{3}+15\sqrt{3}=-2\sqrt{5}+11\sqrt{3}\)
b: \(=3\sqrt{10}-\sqrt{5}+6-\sqrt{2}\)
c; \(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}=-11\sqrt{3}+3\sqrt{2}\)
d: \(=3-\sqrt{3}+\sqrt{3}-1=2\)
f: \(=\sqrt{10}-\sqrt{10}-2-2\sqrt{10}=-2-2\sqrt{10}\)
Câu a : \(\left(\sqrt{80}+\sqrt{20}\right):\sqrt{45}=\sqrt{80}:\sqrt{45}+\sqrt{20}:\sqrt{45}=\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{4}{9}}=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)
Câu b : \(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{18}+\sqrt{27}\right)=\sqrt{54}+\sqrt{81}-\sqrt{36}-\sqrt{54}=\sqrt{81}-\sqrt{36}=9-6=3\)
Câu c : \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{15+3}}=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{18}}\)
\(=\sqrt{15}-\dfrac{6}{\sqrt{18}}=\dfrac{\sqrt{270}-6}{3\sqrt{2}}=\dfrac{3\sqrt{30}-6}{3\sqrt{2}}=\dfrac{3\left(\sqrt{30}-6\right)}{3\sqrt{2}}=\dfrac{\sqrt{30}-2}{\sqrt{2}}=\sqrt{15}-\sqrt{2}\)
B1 :
a) \(\sqrt{1,2.270}=\sqrt{0,4.3.90.3}=3\sqrt{36}=3.6=18\)
\(\sqrt{55.77.35}=\sqrt{5.11.7.11.7.5}=\sqrt{25.49.212}=\sqrt{25}.\sqrt{49}.\sqrt{121}=5.7.11=385\)
b) \(\left(\sqrt{3}-\sqrt{2}\right)^2=3-2.\sqrt{3}.\sqrt{2}+2=5-2\sqrt{6}\)
\(\left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)=3\sqrt{2}.3\sqrt{2}+3\sqrt{2}-3\sqrt{2}-1=18-1\)
\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-2\right)=\sqrt{6}.\sqrt{3}-2\sqrt{6}+2\sqrt{3}-4=\sqrt{18}-2\sqrt{6}+2\sqrt{3}-4\)\(=3\sqrt{2}-2\sqrt{6}+2\sqrt{3}-4\)
\(c,\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right)=\dfrac{\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{3-2}{\sqrt{2}\sqrt{3}}\) = \(\dfrac{1}{\sqrt{6}}\)
\(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=\sqrt{\dfrac{8}{3}}.\sqrt{6}-\sqrt{24}.\sqrt{6}+\sqrt{\dfrac{50}{3}}.\sqrt{6}\) = \(\dfrac{\sqrt{8}.\sqrt{6}}{\sqrt{3}}-\sqrt{144}+\dfrac{\sqrt{50}.\sqrt{6}}{\sqrt{3}}=\dfrac{\sqrt{48}}{\sqrt{3}}-12+\dfrac{\sqrt{300}}{\sqrt{3}}=\sqrt{\dfrac{48}{3}}-12+\sqrt{\dfrac{300}{3}}=4-12+10=2\)
B2 :
a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}=\sqrt{\dfrac{1}{8}.2.125.\dfrac{1}{5}}=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}\)
\(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2+\sqrt{2}-\sqrt{2}-1}=1\)
b) \(\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}=\left|\sqrt{2}-3\right|.\sqrt{2+6\sqrt{2}+9}=\left(\sqrt{2}-3\right).\sqrt{\left(\sqrt{2}+3\right)^2}=\left(\sqrt{2}-3\right)\)\(\left(\sqrt{2}+3\right)=2+3\sqrt{2}-3\sqrt{2}-9=-7\)
\(\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\dfrac{1}{3-\sqrt{3}}}=\left|\sqrt{3}-3\right|.\dfrac{1}{3-\sqrt{3}}=-\left(3-\sqrt{3}\right).\left(\dfrac{1}{3-\sqrt{3}}\right)=-1\)
a, \(\sqrt{5\left(1-\sqrt{2}\right)^2}=\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=\sqrt{5}.\left(1-\sqrt{2}\right)=\sqrt{5}-\sqrt{5}.\sqrt{2}=\sqrt{5}-\sqrt{10}\)
b, \(\sqrt{27\left(2-\sqrt{5}\right)^2}=\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\sqrt{27}.\left(2-\sqrt{5}\right)=2\sqrt{27}-\sqrt{135}\)
c, \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}=\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)
\(=\dfrac{\sqrt{2}}{3-\sqrt{10}}\)
d, \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}=\dfrac{\sqrt{5\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)
\(=\dfrac{\sqrt{5}.\left(1-\sqrt{3}\right)}{2}=\dfrac{\sqrt{5}-\sqrt{15}}{2}\)
Chúc bạn học tốt!!!
a) \(\sqrt{5\left(1-\sqrt{2}\right)^2}\)
= \(\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)
= \(\sqrt{5}.\left(\sqrt{2}-1\right)\)
= \(\sqrt{10}-\sqrt{5}\)
b) \(\sqrt{27\left(2-\sqrt{5}\right)^2}\)
= \(\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)
= \(\sqrt{27}.\left(\sqrt{5}-2\right)\)
= \(\sqrt{135}-2\sqrt{27}\)
c) \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}\)
= \(\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)
= \(\dfrac{\sqrt{2}}{\sqrt{10}-3}\)
d) \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}\)
= \(\dfrac{\sqrt{5}.\sqrt{\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)
= \(\dfrac{\sqrt{5}.\left(\sqrt{3}-1\right)}{2}\)
= \(\dfrac{\sqrt{15}-\sqrt{5}}{2}\)
a)\(\sqrt{400.0,81}=\sqrt{4.81}=\sqrt{2^2.9^2}=2.9=18\)
b)\(\sqrt{\dfrac{5}{27}.\dfrac{3}{20}}=\sqrt{\dfrac{5}{3^3}.\dfrac{3}{2^2.5}}=\sqrt{\dfrac{1}{3^2.2^2}}=\dfrac{1}{3.2}=\dfrac{1}{6}\)
c)\(\sqrt{\left(-5\right)^2.3^2}=\sqrt{5^2.3^2}=5.3=15\)
d)\(\sqrt{\left(2-\sqrt{5}\right)^2\left(2+\sqrt{5}\right)^2}=\sqrt{\left[2^2-\left(\sqrt{5}\right)^2\right]^2}=\sqrt{\left(-1\right)^2}=1\)
em cảm mơn ạ