Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x^4-4x^2-4x-1\)
\(=x^4-\left(4x^2+4x+1\right)\)
\(=x^4-\left(2x+1\right)^2\)
\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)
b) \(x^2+2x-15\)
\(=x^2+2x+1-16\)
\(=\left(x+1\right)^2-4^2\)
\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)
c) \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
B2:
a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)
\(=2x^2-4x+2-4x^2+9\)
\(=-2x^2-4x+11\)
b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(x+3-x+3\right)^2=6^2=36\)
c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)
\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)
\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)
\(=6x^2+88x-57\)
a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3
b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16
bài 1
1.\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)=2x^2+x-x^3-2x^2+x^2-x+3=-x^3+x^2+3\)
2.\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)
3.\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+\left(x-2\right)\left(x+5\right)=2x^2-7x-15-2x^2+6x+x^2+3x-10=x^2+2x-25\)bài 2.
\(P=\left(1-5\right)\left(-1+3\right)-\left(-1+4\right)\left(1+1\right)=-8-6=-14\)
bài 3.
1.\(x\left(5-2x\right)+2x\left(x-1\right)=15\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow-2x=10\Leftrightarrow x=-5\)
2.\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\Leftrightarrow10x^2-30x+11x-33=0\Leftrightarrow\left(x-3\right)\left(10x+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
1)a)3(2x-1)(3x-1)-(2x-3)(9x-1)=0
<=>18x2-15x+1-18x2+29x-3=0
<=>14x-2=0
<=>14x=2
<=>x=1/7
b)4(x+1)2+(2x-1)2-8(x-1)(x+1)=11
<=>4x2+8x+4+4x2-4x+1-8x2+8=11
<=>4x+13=11
<=>4x=11-13
<=>4x=-2
<=>x=-1/2
c)Sai đề phải là dấu - chứ không phải +
(x-3)(x2+3x+9)-x(x-2)(x+2)=1
<=>x3-27-x3+4x=1
<=>4x=1+27
<=>4x=28
<=>x=7
2)a)(2x-3y)(2x+3y)-4(x-y)2-8xy
=4x2-9y2-4x2+8xy-4y2-8xy
=-13y2
b)(x-2)3-x(x+1)(x-1)+6x(x-3)
=x3-6x2+12x+8-x3+x+6x2-18x
=8-5x
c)(x-2)(x2-2x+4)(x+2)(x2+2x+4)
=(x-2)(x2+2x+4)(x+2)(x2-2x+4)
=(x3-8)(x3+8)
=x6-64
Bài 1:
a) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\) (1)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x+28=42\)
\(\Leftrightarrow26x=42-28\)
\(\Leftrightarrow26x=14\)
\(\Leftrightarrow x=\dfrac{7}{13}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{7}{13}\right\}\)
1b) \(5x\left(x+3\right)^2-5\left(x+1\right)^3+15\left(x+2\right)\left(x-2\right)=5\Leftrightarrow5x\left(x^2+6x+9\right)-5\left(x^3+3x^2+3x+1\right)+15\left(x^2-4\right)=5\Leftrightarrow30x-65=5\Leftrightarrow30x=70\Leftrightarrow x=\dfrac{7}{3}\)
Bài 1 :
\(\left(3x-2\right)^2+\left(x-1\right)\left(2x+4\right)=9x^2-12x+4+2x^2+4x-2x-4=11x^2-10x=x\left(11x-10\right)\)
Bài 2 :
a) \(\left(2x+5\right)^2-4x\left(x+1\right)=3\)
=> \(4x^2+20x+25-4x^2-4x=3\)
\(\Rightarrow16x=-22\)
\(\Rightarrow x=-\frac{11}{8}\)
b) \(\left(2x-3\right)^2-\left(2x+1\right)\left(x+2\right)=0\)
\(\Rightarrow4x^2-12x+9-2x^2-4x-x-2=0\)
\(\Rightarrow2x^2-17x+7=0\)
..................