\(a\sqrt{b}\) - \(b\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2019

\(a\sqrt{b}-b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(7\sqrt{7}+3\sqrt{3}=\left(\sqrt{7}+\sqrt{3}\right)\left(7-\sqrt{21}+3\right)=\left(\sqrt{7}+\sqrt{3}\right)\left(10-\sqrt{21}\right)\)

\(a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)

\(1-a\sqrt{a}=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)

\(x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(\left(\sqrt{2}+1\right)^2-4\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

\(\left(\sqrt{5}+2\right)^2-8\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

2 cái trên đều áp dụng HĐT \(\left(a+b\right)^2-4ab=\left(a-b\right)^2\)

\(5\sqrt{2}-2\sqrt{5}=\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)\)

Bài 1: Tìm x để căn thức sau có nghĩaa)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)Bài 2: Tínha) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)Bài 3: Rút gọna)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c)...
Đọc tiếp

Bài 1: Tìm x để căn thức sau có nghĩa

a)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)

Bài 2: Tính

a) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)

Bài 3: Rút gọn

a)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c) 2\(\sqrt{7}\)+\(\sqrt{\left(2-\sqrt{7}\right)^2}\) d) 3\(\sqrt{\left(x-5\right)^2}\) với x < 5

e)\(\sqrt{\frac{9+4\sqrt{5}}{\left(\sqrt{5+2}\right)^2}}\)     f)\(\sqrt{\frac{\sqrt{9-4\sqrt{5}}-\sqrt{5}}{2}}\)+ 5

Bài 4: Tìm x biết:

a)\(\sqrt{4x^2}\)= 8     b) \(\sqrt{1+4x+4x^2}\)\(=\)\(7\)    c)\(\sqrt{x^4}\)\(=\)\(3\)

Bài 5: Phân tích đa thức thành nhân tử

a) x2 -2      b) x2\(-\)2\(\sqrt{3}\)\(\times\)x \(+\)3

Bài 6: Chứng minh a\(\in\)z , b\(\in\)z

A=\(\sqrt{A-2\sqrt{5}}\)\(-\)\(\sqrt{6+2\sqrt{5}}\)   B=\(\frac{\sqrt{3-2\sqrt{2}}}{17-12\sqrt{2}}\)\(-\)\(\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

1
5 tháng 8 2017

giúp mik vs thứ 2 mik nộp rr huhu

NV
8 tháng 8 2020

5.

ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)

\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

6.

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)

NV
8 tháng 8 2020

2.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)

6 tháng 7 2018

2)

\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)

\(=\sqrt{12,1.36.10}\)

= \(\sqrt{121.36}\)

\(=\sqrt{4356}\)

\(=66\)

3)

\(\sqrt{5a}.\sqrt{45a}-3a\)

\(=\sqrt{5.45a^2}-3a\)

\(=\sqrt{225a^2}-3a\)

\(=\sqrt{\left(15a\right)^2}-3a\)

\(=-15a-3a\) ( vì \(a\le0\))

\(=-18a\)

5)

\(\sqrt{0,36a^2}\)

\(=\sqrt{\left(0,6a\right)^2}\)

\(=-0,6a\) ( vì \(a< 0\) )

Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.

Chúc bạn học tốt!

6 tháng 7 2018

1)

\(\sqrt{3a^3}.\sqrt{12}\)

\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)

\(=\sqrt{3.12}.\sqrt{a^3}\)

\(=6\sqrt{a^3}\)

4)

\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)

\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)

\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)

\(=54a^3-6\sqrt{a^2}\)

\(=54a^3-6a^2\) ( vì a<0)

6)

\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)

\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)

\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)

\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)

\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)

\(=a^2\left(a-3\right)\)

\(=a^3-3a^2\)

Còn lại bạn làm tương tự nha, trể quá rùi :)))))

14 tháng 7 2016

a) \(A=\sqrt{81}.\sqrt{\frac{9}{4}}+2\sqrt{16}-3=\sqrt{9^2}.\sqrt{\left(\frac{3}{2}\right)^2}+2\sqrt{4^2}-3=9.\frac{3}{2}+2.4-3=\frac{37}{2}\)

b) \(B=\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

c) Không rút gọn được.

Bài 2 : Mình hướng dẫn thôi nhé ^^

a) \(M=x^2-10x+30=\left(x^2-10x+25\right)+5=\left(x-5\right)^2+5\ge5\)

b) \(N=4x^2-12x+1=\left[\left(2x\right)^2-12x+9\right]-8=\left(2x-3\right)^2-8\ge-8\)

c) \(P=x^2-x-1=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

d) \(Q=16x^2-8x+3=\left[\left(4x\right)^2-8x+1\right]+2=\left(4x-1\right)^2+2\ge2\)

e) \(H=\frac{1}{9}x^2+3x-1=\left[\left(\frac{x}{3}\right)^2+2.\frac{x}{3}.\frac{9}{2}+\frac{81}{4}\right]-\frac{81}{4}-1=\left(\frac{x}{3}+\frac{9}{2}\right)^2-\frac{85}{4}\ge-\frac{85}{4}\)

22 tháng 10 2020

c, ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}-1=2\\\sqrt{2x-1}-1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=3\\\sqrt{2x-1}=-1\left(vn\right)\end{matrix}\right.\)

\(\sqrt{2x-1}=3\Leftrightarrow2x-1=9\Leftrightarrow x=5\left(tm\right)\)

22 tháng 10 2020

a, ĐKXĐ: \(x\in R\)

\(\sqrt{3x^2}=x+2\)

\(\Leftrightarrow\sqrt{3}\left|x\right|=x+2\)

TH1: \(\sqrt{3}x=x+2\)

\(\Leftrightarrow\left(\sqrt{3}-1\right)x=2\)

\(\Leftrightarrow x=\sqrt{3}+1\)

TH2: \(\sqrt{3}x=-x-2\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)x=-2\)

\(\Leftrightarrow x=1-\sqrt{3}\)

20 tháng 7 2018

undefined

20 tháng 7 2018

a: (√x-√3)(√x+√3)

b:(x-√5)(x+√5)

c:(x-√3)^2

d:(x+√7)^2

e:(√5+√3)^2

f:(√7-√3)^2

g: =(1+√3)+(√5+√15) = (1+√3)+√5(1+√3)=(1+√5)(1+√3)