Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết
a) \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b) \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-\left(x-3\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a) 4x2 - 12x - 7 = 4x2 - 12x + 9 - 16 = ( 4x2 - 12x + 9 ) - 16 = ( 2x - 3 )2 - 42 = ( 2x - 3 - 4 )( 2x - 3 + 4 ) = ( 2x - 7 )( 2x + 1 )
b) x2 + 6x - 1 ( nghiệm vô tỉ )
c) x2 - 4x + 2 ( nghiệm vô tỉ )
d) x2 + 4x - 12 = x2 - 2x + 6x - 12 = x( x - 2 ) + 6( x - 2 ) = ( x - 2 )( x + 6 )
e) x2 - 4x - 32 = ( x2 - 4x + 4 ) - 36 = ( x - 2 )2 - 62 = ( x - 2 - 6 )( x - 2 + 6 ) = ( x - 8 )( x + 4 )
f) x2 + 2x - 1 ( nghiệm vô tỉ )
g) x4 - 5x2 = x2( x2 - 5 )
h) Đặt t = x + 2y - 3
<=> t2 - 4t + 4
= ( t - 2 )2
= ( x + 2y - 3 - 2 )2
= ( x + 2y - 5 )2
i) x3( x2 + 1 )2 - 49x
= x[ x2( x2 + 1 )2 - 49 ]
= x[ ( x3 + x )2 - 72 ]
= x( x3 + x - 7 )( x3 + x + 7 )
k) x3 + y3 + z3 - 3xyz
= ( x3 + y3 ) + z3 - 3xyz
= ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
= [ ( x + y )3 + z3 ] - [ 3xy( x + y ) + 3xyz ]
= ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy( x + y + z )
= ( x + y + z )( x2 + 2xy + y2 - xz - yz + z2 - 3xy )
= ( x + y + z )( x2 + y2 + z2 - xy - yz - xz )