Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
bn vào trang wed này mik chỉ cho, cứ nhắn tin cho mik đi rồi mik sẽ ns.
B1/ Sửa đề chút nha, bạn ghi sai đề rồi. Đề đúng là như này
\(a^3+b^3+a^2c+b^2c-abc\)
\(=a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a\)
\(=\left(a^3+a^2b+a^2c\right)+\left(b^2c+b^2a+b^3\right)-\left(a^2b+abc+b^2a\right)\)
\(=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)-ab\left(a+b+c\right)\)
Thay a + b +c = 0 vào ta được
\(a^2\left(a+b+c\right)+b^2\left(a+b+c\right)-ab\left(a+b+c\right)\)
\(=a^2.0+b^2.0-ab.0\)
\(=0\)
Vậy với a + b + c = 0 thì a3 + b3 + a2c + b2c - abc = 0
B2/
a) \(x+xy+y+2=0\)
\(\Leftrightarrow x\left(1+y\right)=-\left(y+2\right)\left(1\right)\)
Nếu y = -1 => 0 = -1 ( Loại )
Nếu y ≠ -1 thì (*)↔ x = - [(y + 1) + 1]/(y + 1)
hay x = - 1 - 1/(y+1)
Để x nguyên thì 1/(y+1) phải nguyên →y = 0 hay y =-2(y+1) là Ư(1) = {- 1 , 1}
y = 0 => x = - 2
y =-2 => x = 0
Nghiệm nguyên của phương trình là :
(x; y)∈ { ( -2; 0) , ( 0; -2) }
b) x+y = xy
<=> x(y-1) = y
<=> x = y/(y-1)= 1+1/(y-1)
Vì x là số nguyên nên 1/(y-1) là số nguyên
=> 1 chia hết cho y-1
=> y-1 là ước của 1
=> y-1=1 hoặc y-1=-1
=> y=2 hoặc y=0
Với y=2 => x=2
Với y=0=> x=0
Nghiệm nguyên phương trình là:
(x; y)∈ { ( 2; 2) , ( 0; 0) }
k bn ah, đề 1 cô giáo mk cho đó
khó wa giúp mk nhá, t3 cần òy