Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: \(A=\dfrac{x^2-2xy+y^2-x^2-2xy-y^2}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{x-y}{-4y^2}\)
\(=\dfrac{-4xy}{x+y}\cdot\dfrac{1}{-4y^2}=\dfrac{x}{y\left(x+y\right)}\)
b: Để x=1/4y thì y=4x
Thay y=4x vào A, ta được:
\(A=\dfrac{x}{4x\left(x+4x\right)}=\dfrac{x}{4x\cdot5x}=\dfrac{1}{20x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\) ( Chữa đề nhé.)
a) \(ĐKXĐ:x\ne-3;x\ne2\)
\(\text{Với }x\ne-3;x\ne2,\text{ ta có: }A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\\ =\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\\ =\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x-4}{x-2}\\ \text{Vậy }A=\dfrac{x-4}{x-2}\text{ với }x\ne-3;x\ne2\)
b) Lập bảng xét dấu:
x x-4 x-2 x-4 2 4 0 0 x-2 _ _ + _ + + 0 + _ +
\(\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)
Vậy để \(A>0\) thì \(x< 2\) hoặc \(x>4\)
c) \(\text{Với }x\ne-3;x\ne2\)
\(\text{Ta có : }A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}\\ =\dfrac{x-2}{x-2}-\dfrac{2}{x-2}=1-\dfrac{2}{x-2}\)
\(\Rightarrow\) Để A nhận giá trị nguyên
thì \(\Rightarrow\dfrac{2}{x-2}\in Z\)
\(\Rightarrow2⋮x-2\\ \Rightarrow x-2\inƯ_{\left(2\right)}\)
Mà \(Ư_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)
Lập bảng giá trị:
\(x-2\) | \(-2\) | \(-1\) | \(1\) | \(2\) |
\(x\) | \(0\left(TM\right)\) | \(1\left(TM\right)\) | \(3\left(TM\right)\) | \(4\left(TM\right)\) |
\(\Rightarrow x\in\left\{-2;-1;1;2\right\}\)
Vậy với \(x\in\left\{-2;-1;1;2\right\}\)
thì \(A\in Z\)
Câu 2:
a) \(ĐKXĐ:x\ne\dfrac{3}{2};x\ne1\)
\(\text{Với }x\ne\dfrac{3}{2};x\ne1,\text{ ta có : }B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\\ =\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}\right]:\left(\dfrac{3\left(1-x\right)}{1-x}+\dfrac{2}{1-x}\right)\\ =\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3-3x+2}{\left(1-x\right)}\\ =\dfrac{\left(-3x+5\right)\cdot\left(1-x\right)}{\left(2x-3\right)\left(x-1\right)\cdot\left(-3x+5\right)}\\ =-\dfrac{1}{2x-3}\)
Vậy \(B=-\dfrac{1}{2x-3}\) với \(x\ne\dfrac{3}{2};x\ne1\)
b) \(\text{Với }x\ne\dfrac{3}{2};x\ne1\)
Để \(B=\dfrac{1}{x^2}\)
\(\text{thì }\Rightarrow\dfrac{-1}{2x-3}=\dfrac{1}{x^2}\\ \Rightarrow2x-3=-x^2\\ \Leftrightarrow2x-3+x^2=0\\ \Leftrightarrow x^2-3x+x-3=0\\ \Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\left(TM\right)\)
Vậy với \(x=-1;x=3\) thì \(B=\dfrac{1}{x^2}\)
1,
a, \(A=\dfrac{2x}{x-3}-\dfrac{3x^2+9}{x^2-9}+\dfrac{x}{x+3}\) (ĐK: \(x\ne\pm3\))
\(=\dfrac{2x\left(x+3\right)+x\left(x-3\right)-3x^2-9}{x^2-9}\)
\(=\dfrac{2x^2+6x+x^2-3x-3x^2-9}{x^2-9}\)
\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
b, ĐK: \(x\pm3\)
\(A=\dfrac{2}{x-1}\Leftrightarrow\dfrac{3}{x+3}=\dfrac{2}{x-1}\)\(\Leftrightarrow3x-3=2x+6\)\(\Leftrightarrow x=9\left(TM\right)\)
Vậy với \(x=9\) thì A = \(\dfrac{2}{x-1}\)
2,
a, \(A=\dfrac{x}{x-1}+\dfrac{2x^2}{x^2-1}-\dfrac{x}{x+1}\) (ĐK: \(x\pm1\))
\(=\dfrac{x\left(x+1\right)-x\left(x-1\right)+2x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2+x+2x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x^2+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x}{x-1}\)
b, ĐK: \(x\pm1\)
\(A=\dfrac{2x}{x-1}=\dfrac{2x-2+2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{2}{x-1}=2+\dfrac{2}{x-1}\)
Để \(A\in Z\) \(\Leftrightarrow2+\dfrac{2}{x-1}\in Z\Leftrightarrow\dfrac{2}{x-1}\in Z\Leftrightarrow x-1\inƯ_{\left(2\right)}\)
\(\Leftrightarrow x-1\in\left\{\pm1\right\}\) \(\Leftrightarrow x\in\left\{0;2\right\}\)
Vậy với \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) thì A \(\in Z\)