Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{-11}{12}.x+0,25=5\)
\(\Rightarrow-\frac{11}{12}.x=5-0,25=\frac{19}{4}\)
\(\Rightarrow-\frac{11}{12}.x=\frac{19}{4}\)
\(\Rightarrow x=\frac{-57}{11}\)
b)\(\left(x-1\right)^5=-32=-2^5\)
\(\Rightarrow\left(x-1\right)=-2\)
\(\Rightarrow x=-2+1=-1\)
a) \(\left(\frac{1}{2}\right)^x=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\)
=> x = 5
b) \(\left(\frac{5}{7}\right)^x=\frac{125}{343}\)
\(\left(\frac{5}{7}\right)^x=\left(\frac{5}{7}\right)^3\)
=> x = 3
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
a) (2x-1)^3=27
b) (2x-1)^4=81
c) (x-2)^5=-32
d) (3x-1)^4=(3x-1)^6
đ) 5^x +5^x+2=650
g) 3^x-1 +5.3^x-1=162
a) (2x-1)3 = 27
(2x-1)3 = 93
2x-1 = 9
2x = 9+1
2x = 10
x = 10:5
x = 2
Vậy x = 2
b) (2x-1)4 = 81
(2x-1)4 = (\(\pm\)34)
2x-1 = \(\pm\)3
Trường hợp 1:
2x-1 = 3
2x = 3+1
2x = 4
x = 4:2
x = 2
Trường hợp 2:
2x-1 = -3
2x = -3+1
2x = -2
x = -2:2
x = -1
Vậy x \(\in[_{ }2;-1]\)
Vì không tìm thấy ngoặc nhọn nên mình dùng tạm ngoặc vuông nhé
Tìm X
a) \(2x+\dfrac{3}{24}=3x-\dfrac{1}{32}\)
\(\Leftrightarrow\left(2x+\dfrac{3}{24}\right)-\left(3x-\dfrac{1}{32}\right)=0\)
\(\Leftrightarrow2x+\dfrac{3}{24}-3x+\dfrac{1}{32}=0\)
\(\Leftrightarrow\left(\dfrac{3}{24}+\dfrac{1}{32}\right)+\left(2x-3x\right)=0\)
\(\Leftrightarrow\dfrac{5}{32}-x=0\)
\(\Leftrightarrow x=\dfrac{5}{32}\)
b: (x-5)(2y+1)=7
\(\Leftrightarrow\left(x-5;2y+1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(6;3\right);\left(12;0\right);\left(2;-4\right);\left(-2;-1\right)\right\}\)
a. (2x-1)4=81
=>(2x-1)4=34
=>2x-1=3
=>2x=3+1
=>2x=4
=>x=4:2
=>x=2
b.(x-1)5=-32
=>(x-1)5=(-2)5
=>x-1=-2
=>x=-2+1
=>x=-1
c.(2x-1)6=(2x-1)8
mà chỉ có: (-1)6=(-1)8; 06=08; 16=18
=> để (2x-1) \(\in\){-1;0;1} thì x \(\in\){0; 1/2; 1}
`(x+1)^5=-32`
`=>(x+1)^5=(-2)^5`
`=>x+1=-2`
`=>x=-2-1=-3`
b, (X + 1) 5 = -32
(x+1)5 = (-2)5
x + 1 = -2
x = -2 -1
X = -3