\(B = {x +\sqrt{x}+1 \over \sqrt{x}}\) (x >= 0, x khác 0, khác 1) 
Tìm Min B
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

Ta có: C = \(\frac{x+10}{\sqrt{x}+3}=\frac{x-9+19}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+19}{\sqrt{x}+3}=\sqrt{x}-3+\frac{19}{\sqrt{x}+3}\)

C = \(\sqrt{x}+3+\frac{19}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right)\cdot\frac{19}{\left(\sqrt{x}+3\right)}}-6\)(bđt cosi)

\(\ge2\sqrt{19}-6\)

Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{19}{\sqrt{x}+3}\) <=> \(\left(\sqrt{x}+3\right)^2=19\)

<=> \(\orbr{\begin{cases}\sqrt{x}+3=\sqrt{19}\\\sqrt{x}+3=-\sqrt{19}\left(vn\right)\end{cases}}\) <=> \(\sqrt{x}=\sqrt{19}-3\) <=> \(x=22-6\sqrt{19}\)

Vậy MinC = \(2\sqrt{19}-6\) <=> \(x=22-6\sqrt{19}\)

16 tháng 5 2019

A nhỏ nhất khi \(\sqrt{x}-x\) lớn nhất ta có

\(\sqrt{x}-x=-\left(x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\) 

Dấu bằng xảy ra khi x=1/4

Vậy min A = 4 khi và chỉ khi x=1/4