K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)

\(\Rightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}=5\)

\(\Rightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)\(\Rightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}+\dfrac{x-2017}{2014}+\dfrac{x-2017}{2013}+\dfrac{x-2017}{2012}=0\)\(\Rightarrow\left(x-2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}\right)=0\)

\(\Rightarrow x-2017=0\Rightarrow x=2017\)

3 tháng 7 2016

\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(=>\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)

\(=>\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(=>\left(\frac{x+2016}{2015}+\frac{x+2016}{2014}\right)-\left(\frac{x+2016}{2013}+\frac{x+2016}{2012}\right)=0\)

\(=>\left(x+2016\right).\left[\left(\frac{1}{2015}+\frac{1}{2014}\right)-\left(\frac{1}{2013}+\frac{1}{2012}\right)\right]=0\)

\(=>\orbr{\begin{cases}x+2016=0\\\left(\frac{1}{2015}+\frac{1}{2014}\right)-\left(\frac{1}{2013}+\frac{1}{2012}\right)=0\end{cases}}\)

Do 1/2015 + 1/2014 < 1/2013 + 1/2012

=> (1/2015 + 1/2014) - (1/2013 + 1/2012) khác 0

=> x - 2016 = 0

=> x = 2016

Vậy x = 2016

Ủng hộ mk nha ^_-

a: Sửa đề: \(\dfrac{2x-1}{11}+\dfrac{2x-2}{12}+\dfrac{2x-3}{13}=\dfrac{2x+5}{5}+\dfrac{2x+7}{3}+\dfrac{2x+4}{6}\)

\(\Leftrightarrow\dfrac{2x-1}{11}+1+\dfrac{2x-2}{12}+1+\dfrac{2x-3}{13}+1=\dfrac{2x+5}{5}+1+\dfrac{2x+7}{3}+1+\dfrac{2x+4}{6}+1\)

=>2x+10=0

hay x=-5

b: \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)

=>x-2017=0

hay x=2017

a: Sửa đề: \(\dfrac{2x-1}{11}+\dfrac{2x-2}{12}+\dfrac{2x-3}{13}=\dfrac{2x+5}{5}+\dfrac{2x+7}{3}+\dfrac{2x+4}{6}\)

\(\Leftrightarrow\dfrac{2x-1}{11}+1+\dfrac{2x-2}{12}+1+\dfrac{2x-3}{13}+1=\dfrac{2x+5}{5}+1+\dfrac{2x+7}{3}+1+\dfrac{2x+4}{6}+1\)

=>2x+10=0

hay x=-5

b: \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)

=>x-2017=0

hay x=2017

3 tháng 7 2019

\(\left|3-2x\right|+\left|4y+5\right|=0\)

Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)

Mấy bài khác tương tự

3 tháng 7 2019

|x - y| + |y + 9/25| \(\le\)0

Ta có: |x - y| \(\ge\)\(\forall\)x,y

           |y + 9/25| \(\ge\) 0 \(\forall\)y

=> |x - y| + |y + 9/25|  \(\ge\)\(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)

Vậy ...

(x  + y)2012 + 2013|y - 1| = 0

Ta có: (x + y)2012 \(\ge\)\(\forall\)x, y

      2013|y - 1| \(\ge\)\(\forall\)y

=> (x + y)2012 + 2013|y - 1| \(\ge\)\(\forall\)x,y

Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy ...

18 tháng 8 2016

\(\Rightarrow\frac{x+5}{2015}+1+\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2015}{5}+1+\frac{x+2016}{4}+1+\frac{x+2017}{3}+1\)

\(\Rightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}=\frac{x+2020}{5}+\frac{x+2020}{4}+\frac{x+2020}{3}\)

\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

\(\Rightarrow x=-2020\)

23 tháng 12 2016

thanks