Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)
Mà Cz//Ax (gt)
=> Cz//By (cùng // với Ax)
b/
\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)
Ta có
Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)
c/
\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)
Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)
Xét tg vuông ACD có
\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)
Vì các tia ��OC và ��OD ở trong góc ���^AOB nên:
���^=���^−���^=90∘−���^AOD=AOC−COD=90∘−COD (1)
���^=���^−���^=90∘−���^BOC=BOD−COD=90∘−COD (2)
Từ (1) và (2), suy ra: ���^=���^AOD=BOC.
b) Ta có
���^+���^=(���^+���^)+���^=���^+���^+���^=���^+���^=90∘+90∘=180∘AOB+COD=(AOC+BOC)+COD=AOC+BOC+COD=AOC+BOD=90∘+90∘=180∘
c) Từ giả thiết, ta có: ���^=2⋅���^AOD=2⋅xOD.
Mà ���^=���^+���^+���^=2⋅���^+���^=���^+���^=���^=90∘xOy=xOD+DOC+COy=2⋅xOD+DOC=AOD+DOC=AOC=90∘.
Vậy ��⊥��Ox⊥Oy.
a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)
⇒ˆAOD=ˆBOC
b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)
⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ
Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB
⇒ˆAOB+ˆCOD=180 độ
a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)
Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)
a) a b c
Ta có :
a//b
a vuông góc với c => b vuông góc với c ( theo chuyên đề )
b) Ủa góc A vs góc B đâu vậy bạn ?
a) co vi a//b va \(a\perp c\)nen \(a\perp b\)
b) goc A nam o dau ?....
Bài 3 (sorry vì lười vẽ hình nha ~~)
a. Xét ΔABE vuông tại A ta có \(\widehat{ABE}+\widehat{BEA}=90^o\)(phụ nhau)
\(\Rightarrow\widehat{BEA}=90^o-\widehat{ABE}< 90^o\)(cái này là hiển nhiên rùi nhé :v) (1)
Mặt khác: \(\widehat{BEA}+\widehat{BEC}=180^o\left(kebu\right)\Leftrightarrow\widehat{BEC}=180^o-\widehat{BEA}\)(2)
Từ (1) và (2) suy ra \(\widehat{BEC}>90^ohay\widehat{BEC}\) là góc tù.
b. Ta có: \(\widehat{C}-\widehat{B}=10^o\Leftrightarrow\widehat{C}=10^o+\widehat{B}\)
Xét ΔABC vuông tại A ta có:
\(\widehat{B}+\widehat{C}=90^o\Leftrightarrow\widehat{B}+\widehat{B}+10^o=90^o\Leftrightarrow2\widehat{B}=80^o\Leftrightarrow\widehat{B}=40^o\\ \Rightarrow\widehat{C}=\widehat{B}+10^o=40^o+10^o=50^o\)
Vì BE là tia phân giác của góc ^B nên ta có:
\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}=\frac{40^o}{2}=20^o\)
Ta có: \(\widehat{ABE}+\widehat{AEB}=90^o\left(câua\right)\Leftrightarrow20^o+\widehat{AEB}=90^o\Leftrightarrow\widehat{AEB}=70^o\)
\(\widehat{BEC}+\widehat{AEB}=180^o\left(câua\right)\Leftrightarrow\widehat{BEC}+70^o=180^o\Leftrightarrow\widehat{BEC}=110^o\)
\(\Delta AOB=\Delta COD\left(c.c.c\right)\) suy ra \(\widehat{AOB}=\widehat{COD}\)
Thiếu nhiều ý quá nha
Bài làm của bạn sơ xài
Dựa vào điều kiện nào mà kết luận đc 2 tam giác đó = nhau
Giải chưa chi tiết, cụ thể
Cho \widehat{AOB}+\widehat{A_2} -180^{\circ} = \widehat{B_1}AOB+A2−180∘=B1. Chứng minh rằng AxAx // ByBy.
Hướng dẫn giải:Trong \widehat{A O B}AOB dựng tia O tOt // O xOx. (1)
Suy ra \widehat{O}_{2}+\widehat{A}_{2}=180^{\circ}O2+A2=180∘ (2 góc trong cùng phía).
Khi đó \widehat{O}_{1} =\widehat{A O B}-\widehat{O}_{2} =\widehat{A O B}-\left(180^{\circ}-\widehat{A}_{2}\right) =\widehat{A O B}+\widehat{A}_{2}-180^{\circ} =\widehat{B}_{1}O1=AOB−O2=AOB−(180∘−A2)=AOB+A2−180∘=B1
\Rightarrow O t⇒Ot // B yBy (vì có cặp góc so le trong bằng nhau). (2)
Từ (1) và (2) suy ra A xAx // B yBy (vì cùng song song với O tOt ).
Vậy A tAt // B zBz.