Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)*Với n lẻ
=>n+15 chẵn
=>(n+10).(n+15) chia hết cho 2
*Với n chẵn
=>n+10 chẵn
=>(n+10).(n+15) chia hết cho 2
=>ĐPCM
b)Vì n và n+1 là 2 số tự nhiên liên tiếp
=>n.(n+1) chia hết cho 2
=>n.(n+1).(n+2) chia hết cho 2
Vì n, n+1 và n+2 là 3 số tự nhiên liên tiếp
=>n.(n+1).(n+2) chia hết cho 3
Vậy n.(n+1).(n+2) chia hết cho 2 và 3
c) Vì n và n+1 là 2 số tự nhiên liên tiếp
=>n.(n+1) chia hết cho 2
=>n.(n+1).(n+2) chia hết cho 2
Vì n là số tự nhiên
=>n có 3 dạng là 3k,3k+1,3k+2
*Với n=3k=>n chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
*Với n=3k+1
=>2n+1=2.(3k+1)+1=2.3k+2+1=3.2k+3=3.(2k+1) chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
*Với n=3k+2
=>n+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
Vậy n.(n+1).(n+2) chia hết cho 2 và 3

dfdffiytedteusdereujfyheiudduayijWDK
FRDEWtiogweEEEEEUQRyftukedrfedse | |
45587564353749863412563 | |
hwuqyghbcjquderk | , |
a) 3 chia hết cho n+2
=>n+2 thuộc Ư(3)={1;3;-1;-3}
=>n thuộc {-1;1;-3;-5}
Vậy....
b)Có n+1 chia hết cho 2 và 2 chia hết cho n+1
=>n+1 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {0;1;-2;-3}
Vậy...
Ko biết đúng ko nữa sai thì xin lỗi bn nha
c)2n chia hết cho n-1
=>2(n-1)+2 chia hết cho n-1
=>2 chia hết cho n-1
=>n-1 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {2;3;0;-1}
Vậy....

mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi

a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.
c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2
Ta có n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên trong ba số đó chắc chắn có một số chẵn nên n(n+1)(n+2) chia hết cho 2.
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3

2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
b) Vì \(n\)và \(n+1\)là 2 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)(1)
Vì \(n\), \(n+1\)và \(n+2\)là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)(2)
Từ (1) và (2) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)và \(3\)
c) Vì \(n\), \(n+1\)là 2 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)(1)
Ta có: \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(2n+4-3\right)\)
\(=n\left(n+1\right)\left(2n+4\right)-3n\left(n+1\right)=2.n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)\)
Theo kết quả ở phần b, ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
\(\Rightarrow2n\left(n+1\right)\left(n+2\right)⋮3\)
mà \(3n\left(n+1\right)⋮3\)
\(\Rightarrow2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)⋮3\)
hay \(n\left(n+1\right)\left(2n+1\right)⋮3\)(2)
Từ (1) và (2) \(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)và \(3\)