Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\)
TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0
TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)
\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )
TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\)
Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\)
\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\)
Gộp cả 2 điều kiện x và y ta được m=-1 và m=0
Nãy giờ gõ nó cứ bị lỗi :D
\(\hept{\begin{cases}x+my=1\left(1\right)\\mx+y=1\left(2\right)\end{cases}}\Leftrightarrow x\left(m+1\right)+y\left(m+1\right)=2\) (cộng theo vế (1) và (2) ; tách nhân tử chung)
\(\Leftrightarrow\left(x+y\right)\left(m+1\right)=2\) (3)
Để hệ có nghiệm duy nhất thì x = y = t
Thay vào (3) \(2a\left(m+1\right)=2\Leftrightarrow a\left(m+1\right)=1\)
Mà x,y > 0 nên a = x + y > 0
Suy ra \(\hept{\begin{cases}a>0\\m+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y>0\\m>-1\end{cases}}\)
Vậy với m > -1 thì phương trình có nghiệm duy nhất: x,y > 0 (không chắc)
Ta có : \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-mx\\4x+m\left(3-mx\right)=6\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-mx\\4x+3m-m^2x=6\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-mx\\x=\frac{6-3m}{4-m^2}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-\frac{3m}{m+2}=\frac{3m+6-3m}{m+2}=\frac{6}{m+2}\\x=\frac{6-3m}{4-m^2}=\frac{3m-6}{m^2-4}=\frac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\frac{3}{m+2}\end{matrix}\right.\)
- Ta có : \(\left\{{}\begin{matrix}x>2\\y>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{3}{m+2}>2\\\frac{6}{m+2}>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{3}{m+2}-2=\frac{3-2m-4}{m+2}>0\\\frac{6}{m+2}>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3-2m-4>0\\m+2>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2m+1< 0\\m+2>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m< -\frac{1}{2}\\m>-2\end{matrix}\right.\)
=> \(-2< m< -\frac{1}{2}\)
Vậy ....
a: Vì m/1<>-m/1
neen hệ luôn có nghiệm
b: mx-y=2 và x+my=3
=>y=mx-2 và x+m(mx-2)=3
=>y=mx-2 và x(1+m^2)=5
=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1
x>0; y>0
=>5>0 và -2m^2+5m-2>0
=>2m^2-5m+2<0
=>2m^2-4m-m+2<0
=>(m-2)(2m-1)<0
=>1/2<m<2