\(\dfrac{a^2+b^2}{ab}+\dfrac{ab}{a^2+b^2}\) với a, b > 0

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

\(B=\dfrac{a^2+b^2}{ab}+\dfrac{ab}{a^2+b^2}\)

\(=\dfrac{a^2+b^2}{4ab}+\dfrac{ab}{a^2+b^2}+\dfrac{3\left(a^2+b^2\right)}{4ab}\)

\(\ge2\sqrt{\dfrac{a^2+b^2}{4ab}.\dfrac{ab}{a^2+b^2}}+\dfrac{3.2ab}{4ab}\)

\(=1+\dfrac{3}{2}=\dfrac{5}{2}\)

\(\Rightarrow minB=\dfrac{5}{2}\Leftrightarrow a=b>0\)

7 tháng 9 2021

Áp dụng bất đẳng thức cosi

B>= 2. căn ab(a^2 +b^2)/ab(a^2 +b^2)

   =2. căn 1

   =2

MinB=2 <=> a=b>0

7 tháng 6 2017

tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

7 tháng 5 2019

Đề giả thiết cho như vậy hay là \(a^3+b^3+6ab\le8???\)

8 tháng 5 2019

Đề cho như vậy. (Đề đúng rồi đấy)

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!

15 tháng 4 2020

\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( đúng )

Áp dụng Bunhiacopski ta có:

\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-2+y-3\right)=2\left(x+y-5\right)=2\)

Dấu "=" bạn xét nốt

[Ôn thi vào 10]Câu 1:a. Cho biết \(a=2+\sqrt{3}\) và \(b=2-\sqrt{3}\). Tính giá trị biểu thức: \(P=a+b-ab\)b. Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)Câu 2: Cho biểu thức \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+ 1}\) (với \(x>0,x\ne1\))a. Rút gọn biểu thức \(P\).b. Tìm các giá trị của \(x\) để \(P>\dfrac{1}{2}\).Câu 3:Cho phương...
Đọc tiếp

undefined

[Ôn thi vào 10]

Câu 1:

a. Cho biết \(a=2+\sqrt{3}\) và \(b=2-\sqrt{3}\). Tính giá trị biểu thức: \(P=a+b-ab\)

b. Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)

Câu 2

Cho biểu thức \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+ 1}\) (với \(x>0,x\ne1\))

a. Rút gọn biểu thức \(P\).

b. Tìm các giá trị của \(x\) để \(P>\dfrac{1}{2}\).

Câu 3:

Cho phương trình: \(x^2-5x+m=0\) (\(m\) là tham số).

a. Giải phương trình trên khi \(m=6\).

b. Tìm \(m\) để phương trình trên có hai nghiệm \(x_1,x_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\).

Câu 4:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a. BEFI là tứ giác nội tiếp đường tròn.

b. AE.AF=AC2.

c. Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp △CEF luôn thuộc một đường thẳng cố định.

Câu 5:

Cho hai số dương \(a,b\) thỏa mãn: \(a+b\le2\sqrt{2}\).

Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}\).

8
18 tháng 3 2021

Câu 1 : 

a) 

\(P = a + b - ab = 2 + \sqrt{3} + 2-\sqrt{3} - (2 + \sqrt{3})(2-\sqrt{3})\\ =4 - (2^2 - (\sqrt{3})^2) = 4 - (4 - 3) = 3\)

b)

\(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)\(\left\{{}\begin{matrix}3x+y=5\\3x-6y=-9\end{matrix}\right.\)\(\left\{{}\begin{matrix}y-\left(-6y\right)=5-\left(-9\right)\\x=\dfrac{5-y}{3}\end{matrix}\right.\)\(\left\{{}\begin{matrix}y=2\\x=\dfrac{5-2}{3}=1\end{matrix}\right.\)

Vậy nghiệm của hệ phương trình (x ; y) = (1 ; 2)

18 tháng 3 2021

Câu 1:

a)

\(P=a+b-ab\\ =2+\sqrt{3}+2-\sqrt{3}-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\\ =4-\left(4-2\sqrt{3}+2\sqrt{3}-3\right)\\ =4-1=3\)

Vậy \(P=3\)

b)

\(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x+2y=10\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=7\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\1-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy pht có nghiệm là \(\left(x;y\right)=\left(1;2\right)\)

31 tháng 5 2017

buồn ngủ lắm,vắn tắt thôi nhé:

\(VT=\dfrac{6}{a^2+b^2}+\dfrac{6}{2ab}+\dfrac{13}{ab}+2017\left(a^4+b^4\right)\)

\(\ge\dfrac{24}{\left(a+b\right)^2}+\dfrac{13}{\dfrac{1}{4}\left(a+b\right)^2}+2017.\dfrac{1}{8}\)

17 tháng 5 2019

đề bài là rút gon biểu thức nhé

17 tháng 5 2019

\(\sqrt{9\left(b-2\right)^2}=\sqrt{9}.\sqrt{\left(b-2\right)^2}=3.\left|b-2\right|\)

\(\sqrt{a^2\left(a+1\right)^2}=\sqrt{a^2}.\sqrt{\left(a+1\right)^2}=\left|a\right|.\left|a+1\right|\) Nhưng do a > 0

 Nên: \(\left|a\right|.\left|a+1\right|=a.\left(a+1\right)=a^2+a\)

\(\sqrt{b^2\left(b-1\right)^2}=\sqrt{b^2}.\sqrt{\left(b-1\right)^2}=\left|b\right|.\left|\left(b-1\right)\right|\)

Em mới lớp 5 thôi sai đừng trách :v

Chúc anh học tốt !!!

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
22 tháng 4 2019

\(P=a^2+a^2+b^2+b^2+ab-2ab-6a+3b+6b+2020\)

\(=\left(a^2+b^2+ab+3b\right)+\left(a^2+b^2-2ab-6a+6b+9\right)-9+2020\)

\(=0+\left(a-b-3\right)^2+2011\ge2011\)

Dấu "="  xảy ra <=> a-b-3=0 <=> a=b+3 thế vào \(a^2+b^2+ab+3b=0\). Ta có:

\(\left(b+3\right)^2+b^2+b\left(b+3\right)+3b=0\)

<=> \(3b^2+12b+9=0\Leftrightarrow\orbr{\begin{cases}b=-1\\b=-3\end{cases}}\)

+) Với b=-1 

ta có:  a=-1+3=2 

Nên a+b=1 >-2 loại

+) Với b=-3

Ta có: a=-3+3=0

Nên  a+b=0+-3<-2 tm

Vậy min P=2011 khi và chỉ khi a=0; b=-3

22 tháng 4 2019

Em cảm ơn c Nguyễn Linh Chi ạ!