\(-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

\(3B=-1+\dfrac{1}{3}-\dfrac{1}{3^2}+..+\dfrac{1}{49}-\dfrac{1}{3^{50}}\)

3B+ B = -1 - \(\dfrac{1}{3^{51}}\)

4B= \(-1-\dfrac{1}{3^{51}}\)

B = \(\dfrac{-1-\dfrac{1}{3^{51}}}{4}\)

30 tháng 9 2017

a/ Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)

\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)

còn sao nx thì mk chịu =.=

AH
Akai Haruma
Giáo viên
18 tháng 9 2018

Lời giải:

a)

\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)

b)

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)

\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

a: \(A=\left[6\cdot\dfrac{1}{27}+3\cdot\dfrac{1}{3}+1\right]:\dfrac{-4}{3}\)

\(=\left(\dfrac{2}{9}+2\right)\cdot\dfrac{-3}{4}\)

\(=\dfrac{20}{9}\cdot\dfrac{-3}{4}=\dfrac{-60}{36}=\dfrac{-5}{3}\)

b: \(B=\dfrac{\dfrac{1}{3}\left(\dfrac{1}{13}-\dfrac{1}{2}-\dfrac{1}{17}\right)}{-\dfrac{1}{4}\left(\dfrac{1}{13}-\dfrac{1}{2}-\dfrac{1}{17}\right)}:\dfrac{11}{6}\)

\(=\dfrac{-1}{3}:\dfrac{1}{4}\cdot\dfrac{6}{11}=\dfrac{-4}{3}\cdot\dfrac{6}{11}=\dfrac{-24}{33}=\dfrac{-8}{11}\)

5 tháng 10 2017

\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)

\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)

\(=\dfrac{2}{7}-\dfrac{-220}{567}\)

\(=\dfrac{382}{567}\)

các phần con lại dễ nên bn tự lm đi nhé mk bn lắm

Chúc bạn học tốt!

a: \(=\dfrac{3}{8}\left(27+\dfrac{1}{5}-51-\dfrac{1}{5}\right)+19\)

\(=-24\cdot\dfrac{3}{8}+19=-9+19=10\)

b: \(=\left(35+\dfrac{1}{6}-46-\dfrac{1}{6}\right):\left(\dfrac{-4}{5}\right)\)

\(=\dfrac{-11\cdot5}{-4}=\dfrac{55}{4}\)

c: \(=\left(\dfrac{-15+8}{20}\right):\left[\dfrac{3}{7}+\dfrac{7}{3}\cdot\dfrac{12-5}{20}\right]\)

\(=\dfrac{-7}{20}:\left(\dfrac{3}{7}+\dfrac{49}{60}\right)\)

\(=-\dfrac{147}{523}\)

18 tháng 11 2022

a: \(=\dfrac{3}{8}\left(72+\dfrac{1}{5}-51-\dfrac{1}{5}\right)=\dfrac{3}{8}\cdot21=\dfrac{63}{8}\)

b: \(=25\cdot\dfrac{-1}{125}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{2}-\dfrac{1}{2}=-1\)

c: \(=4\left(35+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}-\left(45+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}\)

\(=\dfrac{-1}{5}\left(140+\dfrac{2}{3}-45-\dfrac{1}{6}\right)=-\dfrac{191}{10}\)