Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=0; x khác 1; x khác 25.
\(A=\frac{x-21}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-5}.\)
=\(\frac{x-21}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}+\frac{\sqrt{x}-5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}\)
\(=\frac{x-21+\sqrt{x}-5-\sqrt{x}+1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}=\frac{x-25}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}-5\right)}.\)
\(=\frac{\sqrt{x}+5}{\sqrt{x}-1}.\)
Kết luận: ...
1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
Bài làm:
đkxđ: \(x\ne4;x\ne9\)
Ta có:
\(P=\frac{2\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(P=\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(P=\frac{2\sqrt{x}-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{2\sqrt{x}-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x-\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(ĐKXĐ:4< x< 9\)
\(P=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(2\sqrt{x}-9\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
+) Ta có: \(2\sqrt{75}-4\sqrt{27}+3\sqrt{12}\)
\(=2\sqrt{25}.\sqrt{3}-4\sqrt{9}.\sqrt{3}+3\sqrt{4}.\sqrt{3}\)
\(=10.\sqrt{3}-12.\sqrt{3}+6.\sqrt{3}\)
\(=4\sqrt{3}\approx6,9282\)
+) Ta có:\(\sqrt{x+6\sqrt{x-9}}\)
\(=\sqrt{x-9+6\sqrt{x-9}+9}\)
\(=\sqrt{\left(\sqrt{x-9}-3\right)^2}\)
\(=\left|\sqrt{x-9}-3\right|\)
\(\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{2-\sqrt{3}}=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{2+\sqrt{3}}{4-3}=\sqrt{5}-\sqrt{3}+2+\sqrt{3}=\sqrt{5}+2\)
Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) ( ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))
\(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)
\(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)
Ở onlinemath thì đông người thật nhưng không làm được bài khó
=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )
=> miny ít người nhưng rất hay onl và rất thông minh
thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó
\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
b.\(Q< 1\)
\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)
\(\Leftrightarrow4\sqrt{x}-8< 0\)
\(\Leftrightarrow0\le x< 4\)
Vay de Q<1 thi \(0\le0< 4\)
Ta có: \(B=\frac{\sqrt{\frac{1}{9}}-3}{\sqrt{\frac{1}{9}}-1}\)
\(B=\frac{\frac{1}{3}-3}{\frac{1}{3}-1}\)
\(B=\frac{-\frac{8}{3}}{-\frac{2}{3}}=4\)
đkxđ: \(\hept{\begin{cases}x\ne1\\x\ne25\end{cases}}\)
Ta có:
\(A=\frac{x-21}{x-6\sqrt{x}+5}+\frac{1}{\sqrt{x}-1}+\frac{1}{5-\sqrt{x}}\)
\(A=\frac{x-21}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-5}\)
\(A=\frac{x-21+\sqrt{x}-5-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)
\(A=\frac{x-25}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)
\(A=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)
\(A=\frac{\sqrt{x}+5}{\sqrt{x}-1}\)