\(99^{99^{99}}\) có tận cùng là bao nhiêu ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

\(99^{99^{99}}\)=992k+1=(992)k=.........01k.99=...........01.99=..........99

Cái này thầy dạy mik rồi

23 tháng 12 2015

1035 +2 = 100..........2  chia hết cho 3 vì (1+0+0+..........+0+2 =3 chia hết cho 3)

9999... có tận cùng là 9

23 tháng 12 2015

k​hông vì chữ số tận cùng không chia hết

14 tháng 12 2015

5151=5150.51=(512)25.51=260125.51=..........01.51=.............51

14 tháng 12 2015

ok ! giải được bao nhiêu tớ cũng lik-e

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt

15 tháng 10 2018

\(\text{So sánh : }\)

\(99^{100}...\text{ }100\cdot99^{99}\)

\(99^{100}...\text{ }\left(99+1\right)\cdot99^{99}\)

\(99^{100}...\text{ }99^{100}+1\)

\(\Rightarrow\text{ }99^{100}< 100\cdot99^{99}\)

\(143^{50}...\text{ }37^{100}\)

\(\Rightarrow\text{ }143^{50}>37^{100}\)

8 tháng 11 2016

51^51 co tan cung la 1

8 tháng 11 2016

6^666 co tan cung la 6

5 tháng 10 2015

\(99^{99^{99}}=99^{2k}.99=...01.99=...99\)
\(6^{666}=\left(6^5\right)^{133}.6=...76^{133}.6=...76.6=...56\)
L I K E nha

12 tháng 2 2019

\(2^{4026}=\left(2^4\right)^{1006}.2^2=16^{1006}.4=\overline{...6}.4=\overline{...4}\)

Vậy 24026 có chữ số tận cùng là 6

12 tháng 2 2019

24026 có tận cùng là : 4 

mik chỉ thử làm thoy

3 tháng 12 2018

MỚI LÀM LÚC TỐI,HÊN QUÁ:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(4A=3-\left(\frac{101}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{203}{3^{100}}\)

\(A=\frac{3}{4}-\frac{203}{3^{100}\cdot4}< \frac{3}{4}\)