![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải
\(A=-5x^2+\frac{10}{7}x-1=-x\left(5x-\frac{10}{7}\right)-1\)
\(A\text{ có GTLN khi }-x\left(5x-\frac{10}{7}\right)\text{ có GTLN}\)
\(\text{Mà }-x\left(5x-\frac{10}{7}\right)\le0\)Dấu " = " xảy ra khi \(-x\left(5x-\frac{10}{7}\right)=0\text{ }\Rightarrow\orbr{\begin{cases}-x=0\\5x-\frac{10}{7}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\5x=\frac{10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{7}\end{cases}}\)
\(\Rightarrow\text{ }Max\text{ }A=0-1=-1\text{ khi }x\in\left\{0\text{ ; }\frac{2}{7}\right\}\)
Bài giải
\(A=-5x^2+\frac{10}{7}x-1=-x\left(5x-\frac{10}{7}\right)-1\)
\(A\text{ đạt GTLN khi }-x\left(5x-\frac{10}{7}\right)\text{ đạt GTLN}\)
\(\text{Mà }-x\left(5x-\frac{10}{7}\right)\le0\) Dấu " = " xảy ra khi \(-x\left(5x-\frac{10}{7}\right)=0\text{ }\Rightarrow\orbr{\begin{cases}-x=0\\5x-\frac{10}{7}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\5x=\frac{10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{7}\end{cases}}\)
\(\Rightarrow\text{ }Max\text{ }A=0-1=-1\text{ khi }x\in\left\{0\text{ ; }\frac{2}{7}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2
Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5
=> M \(\ge\) 5x5 - 5x5 + 2 = 2
Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1
\(ab=\frac{1}{c};c=\frac{1}{ab}\)
\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)
\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)
\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)
\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Do biểu thức ban đầu dương nên ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
Tìm x nha