Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !
\(a,\left|3x-1\right|=\left|5-2x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)
b,\(\left|2x-1\right|+x=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)
c.\(A=0,75-\left|x-3,2\right|\)
Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)
Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)
Vậy Max A = 0,75 khi x = 3,2
\(d,B=2.\left|x+1,5\right|-3,2\)
Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2
Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)
\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)
Vậy Min B = -3,2 khi x = -1,5
a) |x| = 1212
=> x = 1212 hoặc -1212
T_T các câu kia tườn tự vậy thôi bạn, dài quá @_@
học tốt -_-"
a) \(\left|x\right|=1212\)
\(\Rightarrow\orbr{\begin{cases}x=1212\\x=-1212\end{cases}}\)
b) \(\left|2x+1212\right|=3434\)
\(\Rightarrow\orbr{\begin{cases}2x+1212=3434\\2x+1212=-3434\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2222\\2x=-4646\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1111\\x=-2323\end{cases}}\)
a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)
mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)
b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)
mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)
c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
a)\(A=12-\left|x-3\right|-\left|y+7\right|\)
\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)
\(\Rightarrow A\le12-0-0=12\)
Vậy Max A = 12 <=> x = 3 ; y = -7
b)\(B=-\left(x-2018\right)^6-1\)
\(-\left(x-2018\right)^6\le0\)
\(B\le0-1=-1\)
Vậy Max B = -1 <=> x = 2018
a) \(A=12-\left|x-3\right|-\left|y+7\right|\)
Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)
suy ra: \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)
Vậy MIN A = 12
Dấu "=" xảy ra <=> \(x=3;y=-7\)
b) \(B=-\left(x-2018\right)^6-1\)
Nhận thấy: \(\left(x-2018\right)^6\ge0\)
suy ra: \(B=-\left(x-2018\right)^2-1\le-1\)
Vậy MIN B = -1
Dấu "=" xảy ra <=> \(x=2018\)
c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)
Nhận thấy: \(\left|x+8\right|\ge0\) \(\left(3y+7\right)^{2016}\ge0\)
suy ra: \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)
Vậy MIN C = 20/7
Dấu "=" xảy ra <=> \(x=-8;y=-\frac{7}{3}\)
a) |x - 1,7| = 2,3
Xét 2 trường hợp:
TH1: x - 1,7 = -2,3
x = -2,3 +1,7
x = -0,6
TH2: x - 1,7 = 2,3
x = 2,3 + 1,7
x = 4
Vậy: Tự kl :<