Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
f) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n
do do n thuoc U(5)={1;5}
vay n=1 hoac n=5
xin loi nhe tu tu roi minh giai tiep nhe
a)(2n + 6) ⋮ (2n - 1)
Do đó ta có (2n + 6) = (2n - 1) + 7
Nên 7 ⋮ 2n - 1
Vậy 2n - 1 ∈ Ư(7) = {-1; 1; -7; 7}
Ta có bảng sau :
2n - 1 | -1 | 1 | -7 | 7 |
2n | 0 | 2 | -6 | 8 |
n | 0 | 1 | -3 | 4 |
➤ Vậy n ∈ {0; 1; -3; 4}
b)(3n + 7) ⋮ (n - 2)
(3n + 7) ⋮ 3(n - 2)
Do đó ta có (3n + 7) = 3(n - 2) + 13
Nên 13 ⋮ n - 2
Vậy n - 2 ∈ Ư(13) = {-1; 1; -13; 13}
Ta có bảng sau :
n - 2 | -1 | 1 | -13 | 13 |
n | 1 | 3 | -11 | 15 |
➤ Vậy n ∈ {1; 3; -11; 15}
c)(n + 7) ⋮ (n - 3)
Do đó ta có (n + 7) = (n - 3) + 10
Nên 10 ⋮ n - 3
Vậy n - 3 ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
Ta có bảng sau :
n - 3 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
n | 2 | 4 | 1 | 5 | -2 | 8 | -7 | 13 |
➤ Vậy n ∈ {2; 4; 1; 5; -2; 8; -7; 13}
d)(2n + 16) ⋮ (n + 1)
(2n + 16) ⋮ 2(n + 1)
Do đó ta có (2n + 16) = 2(n + 1) + 14
Nên 14 ⋮ n + 1
Vậy n + 1 ∈ Ư(14) = {-1; 1; -2; 2; -7; 7; -14; 14}
Ta có bảng sau :
n + 1 | -1 | 1 | -2 | 2 | -7 | 7 | -14 | 14 |
n | -2 | 0 | -3 | 1 | -8 | 6 | -15 | 13 |
➤ Vậy n ∈ {-2; 0; -3; 1; -8; 6; -15; 13}
e)(2n + 3) ⋮ n
2n + 3 ⋮ 2(n + 0)
Do đó ta có 2n + 3 = n + 3
Nên 3 ⋮ n
Vậy n ∈ Ư(3) = {-1; 1; -3; 3}
➤ Vậy n ∈ {-1; 1; -3; 3}
f)(5n + 12) ⋮ (n - 3)
(5n + 12) ⋮ 5(n - 3)
Do đó ta có (5n + 12) = 5(n - 3) + 27
Nên 27 ⋮ n - 3
Vậy n - 3 ∈ Ư(27) = {-1; 1; -3; 3; -9; 9; -27; 27}
Ta có bảng sau :
n - 3 | -1 | 1 | -3 | 3 | -9 | 9 | -27 | 27 |
n | 2 | 4 | 0 | 6 | -6 | 12 | -24 | 30 |
➤ Vậy n ∈ {2; 4; 0; 6; -6; 12; -24; 30}
B) n+5/n+3
Ta có:
(n+5) - (n+3) chia hết cho n+3
=>(n-n) + (5-3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}
Ta có:
*)n+3= 1
n=1-3
n= -2
*)n+3=2
n= 2 - 3
n= -1
*)n+3= -1
n= -1-3
n= -4
*)n+3= -2
n= -2 - 3
n= -5
Để tớ gửi từ từ từng câu 1 nhé
( Tự tính nhá...các câu na ná nhau... )
\(a)\dfrac{7}{3n-1}\) là số tự nhiên thì 3n - 1 ϵ Ư(7) = \(\left\{\pm1,\pm7\right\}\) .....
\(b)\dfrac{n+5}{n+3}=\dfrac{n+3+2}{n+3}=1+\dfrac{2}{n+3}\)
\(\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1,\in2\right\}\) .....
\(c)\dfrac{n-3}{n-1}=\dfrac{n-1-2}{n-1}1-\dfrac{2}{n-1}\\ \Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}......\)
d: Ta có: 3n+1 chia hết cho n-1
=>3n-3+4 chia hết cho n-1
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
e: =>5n-5 chia hết cho 5n+1
\(\Leftrightarrow5n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{5};\dfrac{1}{5};-\dfrac{3}{5};\dfrac{2}{5};-\dfrac{4}{5};1;-\dfrac{7}{5}\right\}\)
f: =>5n+5-5 chia hết cho n+1
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
b: \(\Leftrightarrow3n+6+5⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
c: \(\Leftrightarrow n+3+5⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-2;-4;2;-8\right\}\)
d: \(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
e: \(\Leftrightarrow n-8-4⋮n-8\)
\(\Leftrightarrow n-8\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{9;7;10;6;12;4\right\}\)
b: ⇔3n+6+5⋮n+2⇔3n+6+5⋮n+2
⇔n+2∈{1;−1;5;−5}⇔n+2∈{1;−1;5;−5}
hay n∈{−1;−3;3;−7}n∈{−1;−3;3;−7}
c: ⇔n+3+5⋮n+3⇔n+3+5⋮n+3
⇔n+3∈{1;−1;5;−5}⇔n+3∈{1;−1;5;−5}
hay n∈{−2;−4;2;−8}n∈{−2;−4;2;−8}
d: ⇔2n+2+1⋮n+1