K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Answer:

\(B=3^1+3^2+3^3+...+3^{100}\)

\(=\left(3^1+3^2\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3.4+...+3^{99}.4\)

\(=2.2\left(3+...+3^{99}\right)⋮2\)

Vậy ta có điều cần phải chứng minh

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

21 tháng 12 2017

B=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+......+(3^97+3^98+3^99+3^100)

B=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+.......+3^97(1+3+3^2+3^3)

B=3.40+3^5.40+......+3^97.40

B=40.3.(1+3+3^2+.......+3^98+3^99)

B=120.(1+3+3^2+.........+3^98+3^99)

Suy ra B chia hết cho 120

21 tháng 12 2017

cho B=3+3^2+3^3+...+3^100.chứng minh rằng B chia hết cho 120

Ta có :

A=3+3^2+3^3+...+3^100

B=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)

B=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^97(1+3+3^2+3^3)

B=3.40+3^5.40+....+3^97.40

B=40.(3+3^5+...+3^97)chia hết cho 40

Vì B có 25 số lũy thừa cơ số 3 nên M chia hết cho 3.

 Suy ra, B chia hết cho 40 và 3 tức là B chia hết cho 120 
vậy A chia hết cho 120

2 tháng 7 2019

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

2 tháng 7 2019

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

22 tháng 12 2021

bạn ghi lại đề đi bạn

22 tháng 12 2021

\(B=3\left(1+3\right)+...+3^{99}\left(1+3\right)=4\left(3+...+3^{99}\right)⋮2\)

22 tháng 12 2021

B=3(1+3)+...+399(1+3)=4(3+...+399)2

25 tháng 12 2015

 4= 30+31(làm ra nháp)

S= 3+32+33+...+3100

S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)

S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)

S=3x4+3^3x4+3^5x4+...+3^99x4

S=4x(3+3^3+3^5+...+3^99)

=> S chia hết cho 4.

 

 

22 tháng 3 2021

Đặt Tên Chi

Tìm kiếm

Báo cáo

Đánh dấu

24 tháng 12 2015 lúc 20:28

Cho S=3+32+33+........+3100

a, Chứng minh rằng S chia hết cho 4.

b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3

Toán lớp 6