Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(4\left(x-5\right)-x^2\left(x+1\right)-x^3\left(x-3\right)-\left(x-4+x^2\right)\)
A = \(4x-20-x^3-x^2-x^4+3x^3-x+4-x^2\)
A = \(-x^3-3x^3-x^2+x^2-x^4+4x-x-20+4\)
A = \(-4x^3-x^4+4x-16\)
B = \(-3\left(x^2-x+1\right)-2\left(4-x^2\right)-6\left(x+1\right)-x^4-x^3\)
B = \(-3x^2+3x-3-8+2x^2-6x-6-x^4-x^3\)
B = \(-x^4-x^3-3x^2-2x^2+3x-6x-3-8-6\)
B = \(-x^4-x^3-5x^2-3x-17\)
C = \(-\left(x^4+3x^2-2\right)-x^2\left(5-x\right)+3\left(x-1\right)\)
C = \(-x^4-3x^2+2-5x^2+x^3+3x-3\)
C = \(-x^4+x^3-3x^2+5x^2+3x+2-3\)
C = \(-x^4+x^3-2x^2+3x-1\)
#Yiin
\(A=4x-20-x^3-x-x^4+3x^3-x+4-x^2\)
\(=-x^4+2x^3-x^2+2x-16\)
\(B=-3x^2+3x-3-8+2x^2-6x-6-x^4-x^3\)
\(=-x^4-x^3-x^2-3x-17\)
\(C=-x^4-3x^2+2-5x^2+x^3+3x-3\)
\(=-x^4+x^3-8x^2+3x-1\)
Từ đó có:
\(A-B=-x^4+2x^3-x^2+2x-16-\left(-x^4-x^3-x^2-3x-17\right)\)
\(=-x^4+2x^3-x^2+2x-16+x^4+x^3+x^2+3x+17\)\(=3x^3+5x+1\)
\(B-C=-x^4-x^3-x^2-3x-17-\left(-x^4+x^3-8x^2+3x-1\right)\)
\(=-x^4-x^3-x^2-3x-17+x^4-x^3+8x^2-3x+1\)
\(=-2x^3+7x^2-6x-16\)
\(C-A=-x^4+x^3-8x^2+3x-1-\left(-x^4+2x^3-x^2-2x-16\right)\)
\(=-x^4+x^3-8x^2+3x-1+x^4-2x^3+x^2+2x+16\)
\(=-x^3-7x^2+5x+15\)
B.1:
a) Với x = 1/2, y = -1/3, A= \(3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(-\frac{1}{3}\right)^3\)=\(\frac{-1}{8}+\frac{1}{6}+\frac{-1}{18}\)=\(\frac{-1}{72}\)
b)Với x = -1, y = 3, B=
\(\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)\(=9+\left(-3\right)+\left(-1\right)+27\)
\(=32\)
B.2:
\(P\left(-1\right)=\left(-1\right)^4+2.\left(-1\right)^2+1\)\(=1+2+1=4\)
\(P\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^4+2.\left(\frac{1}{2}\right)^2+1\)\(=\frac{1}{16}+\frac{1}{2}+1\)\(=\frac{25}{16}\)
\(Q\left(-2\right)=\left(-2\right)^4+4\left(-2\right)^3+2\left(-2\right)^2-4\left(-2\right)+1\)\(=16+\left(-32\right)+8-\left(-8\right)+1=1\)
\(Q\left(1\right)=1^4+4.1^3+2.1^2=1+4+2=7\)
Chúc cậu học tốt
a,
\(\left(x+\frac{1}{3}\right)^2=\frac{1}{4}\)
⇒ \(\left[{}\begin{matrix}x+\frac{1}{3}=\frac{1}{2}\\x+\frac{1}{3}=-\frac{1}{2}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\\x=-\frac{3}{6}-\frac{2}{6}=-\frac{5}{6}\end{matrix}\right.\)
Vậy.....
b, \(\left(2x+3\right)^2=\frac{9}{121}\)
⇒ \(\left[{}\begin{matrix}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}2x=\frac{3}{11}-\frac{33}{11}=-\frac{30}{11}\\2x=-\frac{3}{11}-\frac{33}{11}=-\frac{36}{11}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{15}{11}\\x=-\frac{12}{11}\end{matrix}\right.\)
c, \(\left(3x-1\right)^3=-\frac{8}{27}\)
⇒ \(3x-1=-\frac{2}{3}\)
⇒ \(3x=-\frac{2}{3}+1=\frac{1}{3}\)
⇒ \(x=\frac{1}{9}\)
d, \(4^x+4^{x+2}=112\)
⇒ \(4^x.\left(1+16\right)=112\)
=> \(4^x.17=112\)
Chỗ này kì nè :33 bạn xem lại đềcoi
A = 1 + 3 + 32 + 33 + 34 + 35 + ... + 330
3A = 3 + 32 + 33 + 34 + 35 + 36 + ... + 331
3A - A =( 3 + 32 + 33 + 34 + 35 + 36 + ... + 331 ) - ( 1 + 3 + 32 + 33 + 34 + 35 + ... + 330 )
2A = 1 + 331
\(A=\frac{1+3^{31}}{2}\)
Vậy A = \(\frac{1+3^{31}}{2}\)
Nhớ K cho mk nha
b )
B = 1 + x + x2 + x3 + x4 + ... + xn
xB = x + x2 + x3 + x4 + x5 + ... + xn+1
\(xB-B=\left(x+x^2+x^3+x^4+x^5+...+x^{n+1}\right)-\left(1+x+x^2+x^3+x^4+...+x^n\right)\) \(\left(x-1\right)B=x^{n+1}-1\)
\(B=\frac{x^{n+1}-1}{x}\)
Vậy B = \(\frac{x^{n+1}-1}{x}\)