K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2015

Ta thấy :

           \(\frac{1}{1^2}=1\)\(\frac{1}{2^2}<\frac{1}{1.2}\)\(\frac{1}{3^2}<\frac{1}{2.3}\); ....  ;  \(\frac{1}{50^2}<\frac{1}{49.50}\)

=> A \(=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

                                                                         \(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}\)\(=2-\frac{1}{50}\)<  2

=> A < 2

đúng mình cái nhé bạn 

23 tháng 4 2017

Giang ho dai ca làm đúng đắn lắm ;-) ¶¶*

1 tháng 5 2016

Ta thấy 1/2< 1/1.2 ; 1/3< 1/2.3 ; 1/42 <1/3.4 ; 1/52 < 1/4.5 ; 1/62 < 1/5.6 ; 1/7<1/6.7 ; 1/82 < 1/7.8

                       suy ra B < 1/1.2 + 1/2.3 +1/3.4 +1/4.5 +1/5.6 + 1/6.7 + 1/7.8

                       Đặt A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8

                              A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 -1/8 = 1-1/8 

                         suy ra A <1 mà B<A nên B<1 

16 tháng 10 2016

\(B=1.2+2.3+3.4+...+49.50\)

\(\Rightarrow3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(\Rightarrow3B=49.50.51\)

\(\Rightarrow B=\frac{49.50.51}{3}\)

16 tháng 10 2016

B=\(1.2+2.3+....+49.50\\ \Rightarrow3B=1.2.\left(3-0\right)+2.3.\left(4-1\right)+.....+49.50.\left(51-48\right)\)

\(\Rightarrow3B=1.2.3-0.1.2+2.3.4-1.2.3.+.....+49.50.51-48.49.50\\ \Rightarrow3B=49.50.51\\ \Rightarrow3B=124950\\ \Rightarrow B=41650\)

C=\(1^2+2^2+3^2+....+50^2\\ =1.1+2.2+3.3+.....+50.50\\ =1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+50\left(51-1\right)\\ \)

\(=\left(1.2+2.3+3.4+.....+50.51\right)-\left(1+2+3+....+50\right)\)

Áp dụng bài trên để tính 

6 tháng 5 2016

Ta có: 1/22 < 1/1.2 

          1/32 < 1/2.3 

          .......................

          ........................

          1/1002 < 1/99.100

=> 1/22+1/32+1/42+......+1/1002  < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99 .100 

= > 1/22+1/32+1/42+......+1/1002  < 1-1/2 + 1/2 -1/3 + .... + 1/99 - 1/100 

=>  1/22+1/32+1/42+......+1/1002  <  1 - 1/100

=>1/22+1/32+1/42+......+1/1002  < 99/100 

6 tháng 5 2016

điên hả Thần Hộ Vệ Của Trái Đất

99/100\(\ne\)3/4

5 tháng 3 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình