Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
a
\(A=1+3+3^2+3^3+....+3^{100}\)
\(3A=3+3^2+3^3+3^4+.....+3^{101}\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
b
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(B=1-\frac{1}{2^{99}}\)
c
\(C=5^{100}-5^{99}+5^{98}-5^{97}+....+5^2-5+1\)
\(5C=5^{101}-5^{100}+5^{99}-5^{98}+....+5^3-5^2+5\)
\(6C=5^{101}+1\)
\(C=\frac{5^{101}+1}{6}\)
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow\frac{1}{2}B=\)\(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)
\(\Rightarrow B-\frac{1}{2}B=\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\Rightarrow\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\Rightarrow B=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)
Bài 1:
a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)
=>\(3P=2^{101}-2\)
hay \(P=\dfrac{2^{101}-2}{3}\)
b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)
=>\(6Q=5^{101}+1\)
hay \(Q=\dfrac{5^{101}+1}{6}\)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
A = ( 4/4 + 2/3 ) - ( 51/3 - 6/5 ) - ( 6 - 7/4 + 3/2 )
Sau đó quy đồng rồi trừ cả là đc
B tương tự
C=13/15
D cx thế . Bạn tự vận dụng đi . Xl vì ko giải đc . Mik đang gấp