Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2.A = 2 + 22 + 23 + ...+ 261
=> 2.A - A = (2 + 22 + 23 + ...+ 261) - (1 + 2 + ...+ 260) = 261 - 1 => A = 261 - 1
b) 32.B = 33 + 35 + 37 + ...+ 383
=> 32.B - B = ( 33 + 35 + 37 + ...+ 383 ) - (3 + 33 + 35 + 37 + ...+ 381) = 383 - 3 => 8B = 383 - 3 => B = (383 - 3)/8
c) 23.C = 26 + 29 + ...+ 293
=> 23.C - C = 293 - 23 => 7.C = 293 - 23 => C = (293 - 23)/7
d) 3.D = 3101 - 3100 + 399 - ....- 32
=> 3.D + D = 3101 - 3 => D= (3101 - 3) /4
\(B=3^1+3^2+3^3+....+3^{60}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+....+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+....+3^{59}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+...+3^{59}\right)\)\(⋮\)\(4\)
\(B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\)\(⋮\)\(13\)
mà (4; 13) = 1
nên B chia hết cho 52
a) \(A=1+2+2^2+2^3+...+2^{60}\)
=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)
=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)
=>\(A=2^{61}-1\)
b) \(B=1+3+3^2+3^3+...+3^{46}\)
=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)
=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)
=>\(2A=3^{47}-1\)
=>\(B=\frac{3^{47}-1}{2}\)
c) \(C=1+5^2+5^4+...+5^{200}\)
=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)
=>\(24C=5^{202}-1\)
=>\(C=\frac{5^{202}-1}{24}\)
a) A = \(1+2+2^2+2^3+...+2^{60}\)
2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)
2A = \(2+2^2+2^3+2^4+...+2^{61}\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)- \(\left(1+2+2^2+2^3+...+2^{60}\right)\)
A = \(2^{61}-1\)
b)B = \(1+3+3^2+3^3+...+3^{46}\)
3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)
3B = \(3+3^2+3^3+3^4+...+3^{47}\)
3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)- \(\left(1+3+3^2+3^3+...+3^{46}\right)\)
2B = \(3^{47}-1\)
B = \(\left(3^{47}-1\right):2\)
Rút gọn :
A = 1+ 2 + 22 + 23 + ... + 259 + 260
B = 3 + 32 + 33 + 34 + ... + 32018 + 32019
Giúp mình với
A = 1 + 2 + 22 + 23 + ... + 259 + 260
2A = 2 + 22 + 23 + 24 + ... + 260 + 261
2A - A = 261 - 1
B = 3 + 32 + 33 + 34 + ... + 32018 + 32019
3B = 32 + 33 + 34 + 35 + ... + 32019 + 32020
3B - B = 32020 - 3
B = 32020−32
ta có
\(A=2^0+2^1+2^2+...+2^{60}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{61}\)
\(\Rightarrow2A-A=2^{61}-1\)
\(\Rightarrow A=2^{61}-1\)
tương tự với biểu thức B bạn lấy 3B - B còn 2B rồi chia cho 2 sẽ ra \(\frac{3^{2020}-3}{2}\)
\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)
Vậy \(A⋮18\)
\(B=1+3+3^2+...+3^{11}\)
Ta có: \(52=4\cdot13\)
\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)
Vậy \(B⋮4\)
\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)
Vậy \(B⋮13\)
Vì \(4\) và \(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)
Vậy \(B⋮52\)
\(C=3+3^3+3^5+...3^{31}\)
\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)
Vậy \(C⋮15\)
\(D=2+2^2+2^3+...+2^{60}\)
Tao có: \(21=3\cdot7;15=3\cdot5\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(D⋮3\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)
Vậy \(D⋮5\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)
Ta có:
\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)
\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)
Vậy \(D⋮15;D⋮21\)
Mình chỉ làm mẫu 1 câu thui nha:
\(A=17^{18}-17^{16}\)
\(A=17^{16}.17^2-17^{16}.1\)
\(A=17^{16}\left(17^2-1\right)\)
\(A=17^{16}.288\)
\(A=17^{16}.16.18\)
\(A⋮18\left(đpcm\right)\)
3B=3+3^2+...+3^61
=>2B=3^61-1
=>\(B=\dfrac{3^{61}-1}{2}\)
bn cs thể giải cụ thể đc ko