Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
1) Tìm giá trị nhỏ nhất của :
\(A=\left|x-2\right|+5\)
Ta có: \(\left|x-2\right|\ge0\)Với mọi x
\(\Rightarrow\left|x-2\right|+5\ge5\)
Vậy Min A=5 khi và chỉ khi x=2
2) Tìm giá trị lớn nhất của :
\(B=12-\left|x+4\right|\)
\(-\left|x+4\right|\le0\)Với mọi x
\(\Rightarrow12-\left|x+4\right|\le12\)
Vậy Max B=12 khi và chỉ khi x=-4
1,vì \(\left|x-2\right|\ge0vớimọix\)
\(\Rightarrow\left|x-2\right|+5\ge5\)với mọi x
\(\Rightarrow A\ge5vớimọix\)
vậy GTNN của A là 5 khi x=2
2,vi \(\left|x+4\right|\ge0vớimọix\)
\(\Rightarrow-\left|x+4\right|\le0vớimọix\)
\(\Rightarrow12-\left|x+4\right|\le12vớimọix\)
\(\Rightarrow A\le12vớimọix\)
vay GTLN của A la 12 khi x=-4
a,Ta có:
\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)
b,Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Câu C sai đề
A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra khi: x=7/12
Vậy GTNN của A là 2004 tại x=7/12