Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(\Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
Mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)
\(\Leftrightarrow x+101=0\)
\(\Leftrightarrow x=-101\)
Vậy...
b/ Đặt :
\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+.........+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+....+\dfrac{10^2-9^2}{9^2.10^2}\)
\(=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+....+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=1-\dfrac{1}{10^2}< 1\)
\(\Leftrightarrow A< 1\left(đpcm\right)\)
Vậy...
c/ Với mọi x ta có :
\(\left|x-5\right|=\left|5-x\right|\)
\(\Leftrightarrow\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|5-x\right|\)
\(\Leftrightarrow A=\left|x-10\right|+\left|5-x\right|\)
\(\Leftrightarrow A\ge\left|x-10+5-x\right|\)
\(\Leftrightarrow A\ge5\)
Dấu "=" xảy ra
\(\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge10\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le10\\5\le x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\5\le x\le10\end{matrix}\right.\)
Vậy..
1)
a) \(\frac{x}{6}\)= \(\frac{7}{3}\)
\(\Rightarrow\)x.3=6.7
\(\Rightarrow\)x.3=42
\(\Rightarrow\)x =42:3
\(\Rightarrow\)x =14
b) làm tương tự như câu a
c) làm tương tự như câu
d) làm tương tư như câu a nhưng hơi phúc tạp một chút là bn phải đổi ra từ hỗn số ra phân số hoặc số nguyên
e) tương tự câu d
f) làm tương tự như câu d
2)
a) 3x:\(\frac{27}{10}\)=\(\frac{1}{3}\): \(2\frac{1}{4}\)
3x: \(\frac{27}{10}\) = \(\frac{1}{3}\): \(\frac{9}{4}\)
3x: \(\frac{27}{10}\) = \(\frac{4}{27}\)
3x = \(\frac{4}{27}\). \(\frac{27}{10}\)
3x = \(\frac{2}{5}\)
x = \(\frac{2}{5}\): 3
x = \(\frac{2}{15}\)
Các câu còn lại bn làm tương tự như câu a nha
3)
Làm tương tự như bài 2 nha
mik khuyên bn nếu bn giải bài thì bn nên đổi ra cùng một kiểu số thì tốt hơn như số số thập phân thì thập phân hết ấy
Cuối cùng chúc bn học giỏi
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)
a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)
\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)
=>x=13/12
b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)
\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)
\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)
c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)
\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)
\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)
d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)
\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)
\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)
e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)
=>x+2020=0
hay x=-2020
\(M=\left|x-2002\right|+\left|x-2001\right|\)\(=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=\left|-2002+2001\right|=1\)
tức \(M\ge1\) \(\Leftrightarrow\left[{}\begin{matrix}x-2001=0\\x-2002=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2001\\x=2002\end{matrix}\right.\)
Vậy MinM = - 1 \(\Leftrightarrow\left[{}\begin{matrix}x=2001\\x=2002\end{matrix}\right.\)
a) \(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\left(x-1\right)^2=\left(-15\right).\left(-60\right)=900\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=300^2\\\left(x-1\right)^2=\left(-300\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=300\\x-1=-300\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=301\\x=-299\end{cases}}\)
b) \(\left|x+\frac{4}{5}\right|+\frac{3}{5}=\frac{2}{5}\)
\(\left|x+\frac{4}{5}\right|=\frac{2}{5}-\frac{3}{5}\)
\(\left|x+\frac{4}{5}\right|=\frac{-1}{5}\)
vì \(\left|x+\frac{4}{5}\right|\ge0\forall x\)mà \(\left|x+\frac{4}{5}\right|=\frac{-1}{5}\)
\(\Rightarrow\)không có giá trị x nào thỏa mãn đề bài trên
c) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
a) \(\Leftrightarrow\left(x-1\right)\left(x-1\right)=\left(-60\right).\left(-15\right)\)
\(\Leftrightarrow\left(x-1\right)^2=900=30^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}\Leftrightarrow\orbr{\begin{cases}x=30+1\\x=-30+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=31\\x=-29\end{cases}}}\)
Vậy x = 31 hoặc x = - 29
b) \(\left|x+\frac{4}{5}\right|+\frac{3}{5}=\frac{2}{5}\)
\(\Leftrightarrow\left|x+\frac{4}{5}\right|=\frac{2}{5}-\frac{3}{5}\)
\(\Leftrightarrow\left|x+\frac{4}{5}\right|=\frac{-1}{5}\)vô lý không có giá trị tuyệt đối của số nào mà nhận giá trị âm
Vậy ko có giá trị nào của x thỏa mãn
c) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
a. \(x:3\dfrac{1}{15}=1\dfrac{1}{2}\)
\(x:\dfrac{46}{15}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}.\dfrac{46}{15}=\dfrac{23}{5}\)
b. \(x.\dfrac{3}{2}=-\dfrac{7}{6}\)
\(x=-\dfrac{7}{6}:\dfrac{3}{2}=-\dfrac{7}{9}\)
c. \(\dfrac{5}{6}+\dfrac{1}{4}:x=-\dfrac{2}{3}\)
\(\dfrac{13}{12}:x=-\dfrac{2}{3}\)
\(x=\dfrac{13}{12}:\left(-\dfrac{2}{3}\right)=-\dfrac{13}{8}\)
Còn lại tương tự thôi
\(\)
a, Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
b, Để B lớn nhất thì \(\left(x-\dfrac{2}{3}\right)^2+9\) nhỏ nhất
Ta có: \(\left(x-\dfrac{2}{3}\right)^2+9\ge9\)
\(\Leftrightarrow B=\dfrac{4}{\left(x-\dfrac{2}{3}\right)^2+9}\le\dfrac{4}{9}\)
Dấu " = " khi \(\left(x-\dfrac{2}{3}\right)^2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(MAX_B=\dfrac{4}{9}\) khi \(x=\dfrac{2}{3}\)
Sửa đề: A=|x+1/2|+|x+1/3|
A=|x+1/2|+|-x-1/3|>=|x+1/2-x-1/3|=1/6
Dấu = xảy ra khi -1/2<=x<=-1/3